The Mosaic Company - Climate Change 2018

C0. Introduction

C0.1

(C0.1) Give a general description and introduction to your organization.

The Mosaic Company is the world's leading producer and marketer of concentrated potash and phosphate crop nutrients. Our mission is to help the world grow the food it needs. The combination of our substantial company-owned mineral reserves, our production capacity, geographic locations and worldwide supply chain and distribution network differentiates Mosaic from other crop nutrient companies. Net sales for calendar year 2017 were approximately $7.4 billion, representing sales of approximately 22 million tonnes of finished product. Our business engages in every phase of crop nutrition development, from the mining of resources to the production of crop nutrients, feed and industrial products for customers around the globe. Our customer base includes wholesalers, retail dealers and individual growers in approximately 40 countries.

At Mosaic, we think of sustainability broadly: as the ability to sustain our business, to prosper and deliver value to our myriad stakeholders over many years. Our sustainability targets, progress toward which we report annually, allow us to stretch for meaningful long-term improvements in the areas that are most important to our business. We have developed and use expanded metrics to track our performance in freshwater and energy use, and greenhouse gas emissions.

Mosaic’s Leadership on Climate Change acknowledges that global climate change creates uncertainty for our business and poses challenges for the health and well-being of the world’s populations – ecologically, socially and economically. Mosaic remains a signatory to the United Nations Global Compact and we support its ten universal principles including human rights, labor, environment and anticorruption. In 2017, Mosaic was recognized in Corporate Responsibility Magazine’s 100 Best Corporate Citizens List for the eighth consecutive year.

C0.2

(C0.2) State the start and end date of the year for which you are reporting data.

<table>
<thead>
<tr>
<th>Row</th>
<th>Start date</th>
<th>End date</th>
<th>Indicate if you are providing emissions data for past reporting years</th>
<th>Select the number of past reporting years you will be providing emissions data for</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>January 1 2017</td>
<td>December 31 2017</td>
<td>No</td>
<td><Not Applicable></td>
</tr>
<tr>
<td>2</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>3</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>4</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

C0.3

(C0.3) Select the countries/regions for which you will be supplying data.

Brazil
Canada
Paraguay
United States of America
C0.4

(C0.4) Select the currency used for all financial information disclosed throughout your response.
USD

C0.5

(C0.5) Select the option that describes the reporting boundary for which climate-related impacts on your business are being reported. Note that this option should align with your consolidation approach to your Scope 1 and Scope 2 greenhouse gas inventory.
Operational control

C-CH0.7

(C-CH0.7) Which part of the chemicals value chain does your organization operate in?

Row 1
Bulk organic chemicals
Please select
Bulk inorganic chemicals
Ammonia
Fertilizers
Other chemicals
Please select

C1. Governance

C1.1

(C1.1) Is there board-level oversight of climate-related issues within your organization?
Yes

C1.1a

(C1.1a) Identify the position(s) of the individual(s) on the board with responsibility for climate-related issues.

<table>
<thead>
<tr>
<th>Position of individual(s)</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Board/Executive board</td>
<td>The Environmental Health, Safety, and Sustainable Development Committee (EHSS Committee) of the Mosaic Board of Directors provides oversight of our environmental, health, safety and sustainable development (EHSS) strategic vision and performance, including the safety and health of employees and contractors; environmental performance; the systems and processes designed to manage EHSS risks, commitments, public responsibilities and compliance; relationships with and impact on communities with respect to EHSS matters; public policy and advocacy strategies related to EHSS issues; and achieving societal support of major projects. Climate-related issues are Mosaic's EHSS committee's responsibility because the subject matter is most closely aligned with this committee's expertise. Other committees of the Board may from time to time have input on climate-related issues.</td>
</tr>
<tr>
<td>Chief Executive Officer (CEO)</td>
<td>The Senior Leadership Team (SLT) consisting as of December 31, 2017 of the CEO, SVP and CFO, SVP - Phosphate, SVP - Potash, SVP and General Counsel, SVP - Commercial and SVP - HR, review the EHSS Committee's recommendations in order to develop new companywide policies, initiatives, targets and goals.</td>
</tr>
</tbody>
</table>
(C1.1b) Provide further details on the board’s oversight of climate-related issues.

<table>
<thead>
<tr>
<th>Frequency with which climate-related issues are a scheduled agenda item</th>
<th>Governance mechanisms into which climate-related issues are integrated</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scheduled – all meetings</td>
<td>Reviewing and guiding strategy</td>
<td>Mosaic’s EHSS Committee receives updates about Mosaic’s performance toward climate-related targets (GHGs and energy) at regularly scheduled quarterly meetings. The Committee is also regularly kept apprised of regulatory developments pertaining to the implementation of a carbon tax that could impact our Saskatchewan, Canada facilities.</td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding major plans of action</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding risk management policies</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Reviewing and guiding business plans</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Setting performance objectives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monitoring implementation and performance of objectives</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Overseeing major capital expenditures, acquisitions and divestitures</td>
<td></td>
</tr>
</tbody>
</table>

(C1.2) Below board-level, provide the highest-level management position(s) or committee(s) with responsibility for climate-related issues.

<table>
<thead>
<tr>
<th>Name of the position(s) and/or committee(s)</th>
<th>Responsibility</th>
<th>Frequency of reporting to the board on climate-related issues</th>
</tr>
</thead>
<tbody>
<tr>
<td>Other C-Suite Officer, please specify (VP EHS; VP Corp. Public Affairs)</td>
<td>Both assessing and managing climate-related risks and opportunities</td>
<td>More frequently than quarterly</td>
</tr>
</tbody>
</table>

(C1.2a) Describe where in the organizational structure this/these position(s) and/or committees lie, what their associated responsibilities are, and how climate-related issues are monitored.

Mosaic’s Vice President of Environment, Health and Safety (VP EHS), a role that reports directly to Mosaic’s Sr. VP Phosphates, manages Mosaic’s EHS strategy and development, including the company’s performance toward climate-related sustainability targets (GHGs and energy). While climate-related responsibilities are shared by many at Mosaic, the VP EHS role has purview of these issues due to the interplay between companywide EHS performance and our progress toward our climate-related sustainability targets. The VP EHS also participates in a cross-functional working group that is responsible for managing and monitoring the status of a potential carbon tax that could impact our Saskatchewan, Canada facilities. The VP EHS communicates directly with Mosaic’s EHSS Committee of the Board of Directors, providing quarterly updates on Mosaic’s performance toward sustainability targets and regulatory developments pertaining to the implementation of the carbon tax in Saskatchewan. Mosaic’s VP Corporate Public Affairs, a role that reports directly to our CEO, manages Mosaic’s companywide sustainability strategy and development, including the implementation and monitoring of sustainability targets (GHGs and energy).
(C1.3) Do you provide incentives for the management of climate-related issues, including the attainment of targets?
Yes

C1.3a

(C1.3a) Provide further details on the incentives provided for the management of climate-related issues.

Who is entitled to benefit from these incentives?
Corporate executive team

Types of incentives
Monetary reward

Activity incentivized
Emissions reduction project

Comment
Performance measures for members of Mosaic’s executive and management teams and all salaried employees are based on financial and operational performance, including operating earnings, operating costs per tonne, incentive selling, general and administrative expenses and safety. Climate change is indirectly linked to compensation through operating cost savings that are achieved through site-specific initiatives and companywide programs aimed at reducing energy use and emissions.

Who is entitled to benefit from these incentives?
Management group

Types of incentives
Monetary reward

Activity incentivized
Energy reduction project

Comment
As part of our strategic priority of developing, engaging and empowering our people, we have a performance management process called EDGE – Evaluating, Developing and Growing Excellence. Our performance management process has evolved to include scaled competencies, goal alignment and an emphasis on employee and career development. Management and employees at various levels can establish individual goals, including achievement of or progress towards energy reduction projects and/or targets, results of which are linked to their respective annual incentives.

C2. Risks and opportunities

C2.1

(C2.1) Describe what your organization considers to be short-, medium- and long-term horizons.

<table>
<thead>
<tr>
<th></th>
<th>From (years)</th>
<th>To (years)</th>
<th>Comment</th>
</tr>
</thead>
</table>
| Short-term | 0 | 4 | The short-term time horizon is generally aligned with Mosaic's general strategic planning horizons. Specifically, the five-year planning process is considered "medium-term" so the time period less than five years is considered "short-term."
| Medium-term | 5 | 9 | The medium-term time horizon is generally aligned with Mosaic's general strategic planning horizons. Specifically, the company's five-year planning process is considered "medium-term."
| Long-term | 10 | 20 | The long-term time horizon is generally aligned with Mosaic's general strategic planning horizons. Specifically, the company's five-year planning process is considered "medium-term" so the horizon beyond that, including the company's 2030 vision, is considered "long-term." |
C2.2

(C2.2) Select the option that best describes how your organization's processes for identifying, assessing, and managing climate-related issues are integrated into your overall risk management.

Integrated into multi-disciplinary company-wide risk identification, assessment, and management processes

C2.2a

(C2.2a) Select the options that best describe your organization's frequency and time horizon for identifying and assessing climate-related risks.

<table>
<thead>
<tr>
<th>Frequency of monitoring</th>
<th>How far into the future are risks considered?</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Row 1</td>
<td>Six-monthly or more frequently</td>
<td>>6 years</td>
</tr>
</tbody>
</table>

Mosaic's mission is to help the world grow the food it needs. As a company with operations and customers and farmers located throughout the world, we assess climate change risks and opportunities globally. Climate, including climate changes, and associated risks and opportunities are monitored regularly and the results are reported to the Board, the SLT and the EHSS Committee, and periodically to additional stakeholders through our annual sustainability disclosure. Climate change risks that could impact our business are reported on our Annual Report on Form 10-K and quarterly 10-Q reports. Mosaic considers risks and opportunities well into the future and understands that many of the impacts of climate change on our operations and those affecting our customers are uncertain.

C2.2b

(C2.2b) Provide further details on your organization's process(es) for identifying and assessing climate-related risks.

Mosaic's mission is to help the world grow the food it needs. As a company with operations, customers and farmers located throughout the world, we assess climate change risks and opportunities globally. Climate, including climate changes, and associated risks and opportunities are monitored regularly by teams at Mosaic including EHS, public affairs, enterprise risk management and market analysis, and the results are reported to the Board, the SLT and the EHSS Committee of the Board of Directors, and periodically to additional stakeholders through our annual sustainability disclosure. Mosaic considers risks and opportunities well into the future and understands that many of the impacts of climate change on our operations and those affecting our customers are uncertain. We define "substantive impact" as an impact, financial or non-financial, that could hinder our ability to achieve our strategy, or one that threatens Mosaic's ability to sustain our business.

C2.2c
Which of the following risk types are considered in your organization’s climate-related risk assessments?

<table>
<thead>
<tr>
<th></th>
<th>Relevance & inclusion</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current regulation</td>
<td>Relevant, always included</td>
<td>Legal requirements and environmental regulations (driven by climate change) that Mosaic is subject to could adversely affect our business, financial condition and results of operations, and the results could be material to us. Accordingly, current regulation risks are relevant to Mosaic's ongoing risk assessment process and are always included in Mosaic's broad consideration and analysis of climate-related risks. For example, future changes to air quality standards required us to start replacing catalysts at some of our Florida concentrates facilities in order to achieve compliance on time. We monitor the risk of regulatory changes like these in an effort to strive toward compliance with requirements and standards.</td>
</tr>
<tr>
<td>Emerging regulation</td>
<td>Relevant, always included</td>
<td>Emerging climate regulations are relevant to Mosaic's ongoing risk assessment process and are always included in Mosaic's broad consideration and analysis of climate-related risks. For example, we are currently assessing potential environmental regulation (carbon tax) that could impact our Saskatchewan, Canada potash facilities. A cross-functional team is currently working with the Saskatchewan Ministry of Environment, Climate Change Canada and other government stakeholders to determine next steps for establishing a regulatory and policy framework.</td>
</tr>
<tr>
<td>Technology</td>
<td>Relevant, always included</td>
<td>Because regulatory changes could require operational changes and installation of new technology, including burner replacements and additional heat recovery systems, this risk is relevant to us and are included in our consideration of climate-related risks.</td>
</tr>
<tr>
<td>Legal</td>
<td>Relevant, always included</td>
<td>Legal requirements and environmental regulations (driven by climate change) that Mosaic is subject to could adversely affect our business, financial condition and results of operations, and the results could be material to us. Accordingly, these risks are relevant to Mosaic's ongoing risk assessment process and are always included in Mosaic's broad consideration and analysis of climate-related risks.</td>
</tr>
<tr>
<td>Market</td>
<td>Relevant, always included</td>
<td>Market risks are relevant to Mosaic's ongoing risk assessment process and they are always included in Mosaic's broad consideration and analysis of climate-related risks. Mosaic's market analysis team monitors climate and growing regions, forecasting for climate-related events like droughts and floods, to determine their potential impact on the markets and Mosaic's financial performance. For example, a widespread flood might impact agricultural commodity markets, which could in turn have an effect on Mosaic's annual sales.</td>
</tr>
<tr>
<td>Reputation</td>
<td>Relevant, always included</td>
<td>Reputational risks are relevant to Mosaic's ongoing risk assessment process and they are included in Mosaic's broad consideration and analysis of climate-related risks. For example, negative public perceptions of Mosaic or the fertilizer industry that are a result of climate-related issues could potentially lead to reduced demand for goods, reduced revenue, or could negatively impact our profit.</td>
</tr>
<tr>
<td>Acute physical</td>
<td>Relevant, always included</td>
<td>Acute physical risks are relevant to Mosaic's ongoing risk assessment process, and they are always included in Mosaic's broad consideration and analysis of climate-related risks. Mosaic's market analysis team monitors climate and growing regions, forecasting for climate-related events like droughts and floods, to determine their potential impact on the markets and Mosaic's business performance. Our engineering, EHS and operations teams also regularly monitor acute physical risks. For example, our Phosphates facilities have a rainfall preparedness plan that forecasts how each of our concentrates facilities will perform with 30-percent above-normal rainfall rates. The plan, updated annually prior to the start of peak rainfall season, models the impact of above-average rainfall on a site's storage capacity and defines a contingency plan and necessary actions to mitigate potential risks.</td>
</tr>
<tr>
<td>Chronic physical</td>
<td>Relevant, always included</td>
<td>Chronic physical risks are relevant to Mosaic's ongoing risk assessment process and they are always included in Mosaic's broad consideration and analysis of climate-related risk. For example, Mosaic has approximately $7 billion in assets in hurricane-prone areas. We do annual property risk engineering assessments to identify and mitigate risk of loss associated with weather-related property damage and/or business interruption.</td>
</tr>
<tr>
<td>Upstream</td>
<td>Relevant, sometimes included</td>
<td>Upstream risks are relevant to Mosaic's ongoing risk assessment process and they are sometimes included in Mosaic's broad consideration and analysis of climate-related risks. For example, we rely on raw material inputs for our manufacturing process. Interference of our supply of those goods due to climate-related weather events could result in business interruption or reduced operational output.</td>
</tr>
<tr>
<td>Downstream</td>
<td>Relevant, sometimes included</td>
<td>Downstream risks are relevant to Mosaic's ongoing risk assessment process and they are sometimes included in Mosaic's broad consideration and analysis of climate-related risks. We consider potential downstream risks, like the risk of temperature volatility adversely impacting Mosaic's customers' ability to grow crops in certain areas around the world.</td>
</tr>
</tbody>
</table>
(C2.2d) Describe your process(es) for managing climate-related risks and opportunities.

On a company level, Mosaic’s EHSS Committee reviews and discusses policies regarding risk assessment and management, including sustainability issues and climate change, with management and an internal auditor. It is the responsibility of management to assess and manage the Company’s exposure to risk and the EHSS Committee discusses and reviews guidelines and policies that govern the process. Discussion topics may include financial risk exposures and the steps management has taken to monitor and control such exposures. Mosaic’s SLT addresses environmental risks and opportunities while defining priorities, needs and performance gaps across the company, which are presented to the Board and EHSS Committee regularly throughout the year. Mosaic’s Enterprise Risk Management (ERM) Committee, consisting of a cross-functional team of senior leaders, meets biannually and assists in achieving business objectives through a systematic approach to anticipate, analyze and review material risks. Finally, Mosaic’s EHS and Public Affairs professionals interact with policy makers and global thought leaders to encourage the transfer of knowledge and to bring the latest thinking on climate and sustainability into the Mosaic risk management process. At a facility level, Mosaic has an EHS Management system through which it sets EHS procedures and protocols for preventing, identifying and communicating risks. Our business segments are responsible for implementing day-to-day elements of our EHS program, assisted by an integrated staff of EHS professionals. We conduct audits to verify that each facility has identified risks, achieved regulatory compliance, implemented continuous EHS improvement and incorporated EHS management systems into day-to-day functions. We assess EHS risks with a “risk register” process that allows for the systematic identification, evaluation and ranking of EHS risks. Our Insurance & Risk Management department works with property insurance carriers to regularly conduct risk assessments to identify risks and make recommendations for mitigating the risk of loss associated with property damage and/or business interruption. Priorities are set and decisions are made based on the assessment of the significance of the risk or opportunity, including the potential impact of the risk or opportunity as well as the probability of the risk or opportunity occurring.

As an example of a transition risk to which this process has been applied, a cross-functional team is assessing risk associated with the potential implementation of a carbon tax that could affect our potash facilities in Saskatchewan, Canada. In addition to working with the provincial and federal government to determine next steps for establishing a regulatory and policy framework, we are assessing various scenarios under consideration and evaluating strategies that could help us reduce emissions. An opportunity we have applied this process to relates to our generation of virtually GHG-free cogenerated energy, which provides benefits to Mosaic in the form of cost savings and environmental performance improvements. Since 2015 we have prioritized opportunities to complete numerous cogeneration projects that improve the efficiency and output of our cogeneration assets, like installing a new turbine generator and adding a power line to increase our generation and internal use of cogenerated power. We manage opportunities like these by analyzing costs against potential benefits to our company, like cost savings, favorable reputation impacts, and efficiency or performance improvements.

As an example of a physical risk to which this process has been applied, Mosaic conducts annual property risk engineering assessments to identify risk exposures due to effects from extreme weather events, like wind, flood and storm surge. Those assessments result in recommendations for actions to mitigate risks, which are prioritized based on criteria such as cost, likelihood of occurring and extent and type of impact. The types of actions that results from these assessments include improving existing flood and emergency response plans, replacing or redesigning roof structures to meet or exceed wind uplift requirements, and making enhancements to structures.

C2.3

(C2.3) Have you identified any inherent climate-related risks with the potential to have a substantive financial or strategic impact on your business?

Yes

C2.3a

(C2.3a) Provide details of risks identified with the potential to have a substantive financial or strategic impact on your business.

<table>
<thead>
<tr>
<th>Identifier</th>
<th>Risk 1</th>
</tr>
</thead>
</table>

| Where in the value chain does the risk driver occur? |
| Direct operations |
Risk type
Transition risk

Primary climate-related risk driver
Policy and legal: Increased pricing of GHG emissions

Type of financial impact driver
Policy and legal: Increased operating costs (e.g., higher compliance costs, increased insurance premiums)

Company- specific description
Various governmental initiatives to limit greenhouse gas emissions are under way or under consideration around the world. These initiatives could restrict Mosaic's operating activities, require us to make changes in our operating activities that would increase our operating costs, reduce our efficiency or limit our output, require us to make capital improvements to our facilities, increase our energy, raw material and transportation costs or limit their availability, or otherwise adversely affect our results of operations, liquidity or capital resources, and these effects could be material to us. Our Canadian potash mines, located in the Province of Saskatchewan, could be subject to federal or provincial regulation that assigns a comprehensive tax on carbon emissions.

Time horizon
Short-term

Likelihood
About as likely as not

Magnitude of impact
Medium

Potential financial impact
10000000

Explanation of financial impact
One of the regulations under consideration, proposed by the Canadian Federal Government, applies a starting tax of $10 per unit of CO2e generated above a specific threshold increasing to $50 per unit by 2022. Assuming a tax of $10 per unit of CO2e, the annual cost to Mosaic could be over $10 million. Note: This impact represents an estimate only, and is a simplification of one scenario under consideration at the time of our completing this report.

Management method
Our Saskatchewan Potash facilities will continue to work with the Saskatchewan Ministry of Environment and Environment and Climate Change Canada, through participation in industry associations, to determine next steps. We will also continue to monitor developments relating to the anticipated proposed legislation, as well as the potential future effect on our operating activities, energy, raw material and transportation costs, results of operations, liquidity or capital resources. Mosaic proactively emphasizes energy efficiency in our operations as one way to manage and/or mitigate the potential risks of regulatory changes that are driven by climate change. Mosaic's three-pronged approach of energy management through cogeneration, conservation and greater efficiency aims to lead the industry in reducing the energy we use and maximizing the clean energy we generate. As a specific example of our management efforts, in 2017, Mosaic installed a solar array at our Carlsbad facility that powers the site's administration building, thereby improving the facility's energy efficiency and offsetting the amount of fossil fuel-based power that Mosaic would have otherwise had to purchase from the local grid.

Cost of management
150000

Comment
The solar installation project referenced above cost approximately $150,000. There are other projects and approaches under consideration, costs for which vary drastically.

Identifier
Risk 2

Where in the value chain does the risk driver occur?
Direct operations

Risk type
Transition risk

Primary climate-related risk driver
Technology: Unsuccessful investment in new technologies

Type of financial impact driver
Technology: Costs to adopt/deploy new practices and processes
Company-specific description
Environmental regulations (driven by climate change) that Mosaic is subject to could adversely affect our business, financial condition and results of operations, and the results could be material to us. There are various initiatives under consideration in the United States, Canada and internationally that, if adopted, could adversely affect our operating activities, energy, raw material and transportation costs, results of operations, liquidity or capital resources, and these effects could be material to us. For example, we have facilities in Saskatchewan, Canada that could be affected by Canada's intended NDC, which aims to achieve, by 2030, an economy-wide target of reducing GHG emissions by 30% below 2005 levels. We are monitoring developments relating to the anticipated proposed legislation, as well as the potential future effect on our operating activities, energy, raw material and transportation costs, results of operations, liquidity or capital resources.

Time horizon
Long-term

Likelihood
About as likely as not

Magnitude of impact
Medium

Potential financial impact
10000000

Explanation of financial impact
One of the regulations under consideration, proposed by the Canadian Federal Government, applies a starting tax of $10 per unit of CO2e generated above a specific threshold increasing to $50 per unit by 2022. Assuming a tax of $10 per unit of CO2e, the annual cost to Mosaic could be over $10 million. Note: This impact represents an estimate only, and is a simplification of one scenario under consideration at the time of our completing this report. Any agreement, regulation or program that limits or taxes direct and indirect GHG emissions from our facilities could increase operating costs directly and through suppliers. In the United States, hypothetical regulatory changes that required installation of technology such as burner replacements or additional heat recovery systems and related equipment could cost Mosaic more than $100 million.

Management method
Mosaic proactively emphasizes energy efficiency in our operations as one way to manage and/or mitigate the potential risks of regulatory changes that are driven by climate change. Mosaic's three-pronged approach of energy management through cogeneration, conservation and greater efficiency aims to lead the industry in reducing the energy we use and maximizing the clean energy we generate. As a specific example of our management efforts, in 2017, Mosaic installed a solar array at our Carlsbad facility that powers the site's administration building, thereby improving the facility's energy efficiency and offsetting the amount of fossil-fuel-based power that Mosaic would have otherwise had to purchase from the local grid.

Cost of management
150000

Comment
The solar installation project referenced above cost approximately $150,000. There are other projects and approaches under consideration, costs for which vary drastically.

Identifier
Risk 3

Where in the value chain does the risk driver occur?
Direct operations

Risk type
Physical risk

Primary climate-related risk driver
Acute: Increased severity of extreme weather events such as cyclones and floods

Type of financial impact driver
Increased capital costs (e.g., damage to facilities)

Company-specific description
Mosaic has approximately $7 billion in assets in hurricane-prone areas. Mosaic's insurance deductible for a covered wind event is, at a minimum, $25 million per occurrence. Although our containments are built to withstand storms, additional sustained hurricane activity could force a change in design standards for buildings, equipment or containments. This could result in increased capital costs or costs per tonne of product.

Time horizon
Current

Likelihood
About as likely as not

Magnitude of impact
Medium

Potential financial impact
25000000

Explanation of financial impact
Mosaic’s insurance deductible for a covered wind event is, at a minimum, $25 million per occurrence. Although our containments are built to withstand storms, additional sustained hurricane activity could force a change in design standards for buildings, equipment or containments. This could result in increased capital costs or costs per tonne of product. In the event of widespread damage, we may face costs up to or exceeding our insurance deductible of $25 million.

Management method
We manage these potential climate change risks by focusing on hurricane preparedness at all facilities that are within the zone of risk. Each site’s preparation process includes the establishment of procedures and guidelines for the direction, control, and coordination for securing, shutdown, safe evacuation (if required), and the orderly restoration of plant operations in the event of a storm. These procedures and guidelines were used in 2017 in the days leading up to, during and following Hurricane Irma. We also conduct property risk engineering assessments on an ongoing basis to address risk identifying and mitigating risks associated with property damage and business interruption. The types of actions that results from these assessments include improving existing flood and emergency response plans, replacing or redesigning roof structures to meet or exceed wind uplift requirements, and making enhancements to structures.

Cost of management
150000

Comment
The approximate cost of installing fasteners to secure roof panels as a way to reduce and/or avoid damage from hurricanes is 150,000.

Identifier
Risk 4

Where in the value chain does the risk driver occur?
Direct operations

Risk type
Physical risk

Primary climate-related risk driver
Chronic: Changes in precipitation patterns and extreme variability in weather patterns

Type of financial impact driver
Increased operating costs (e.g., inadequate water supply for hydroelectric plants or to cool nuclear and fossil fuel plants)

Company-specific description
Changes in precipitation resulting in droughts or water shortages at our mines in Florida or Saskatchewan where we manage large volumes of water in our daily operations could restrict our operating activities, require us to make changes in our operating activities that would increase our operating costs, reduce our efficiency or limit our output.

Time horizon
Medium-term

Likelihood
Unlikely

Magnitude of impact
Medium

Potential financial impact
74000000

Explanation of financial impact
Mosaic’s 2017 net sales totaled approximately $7.4 billion. A theoretical decrease in production output that resulted in 1% lower sales companywide could translate to approximately $74 million less revenue based on 2017 performance.
Management method
We are committed to responsible water use. We manage these potential climate change risks by recycling high percentages of the water used in our Phosphates and Potash businesses and by exploring the use of alternative water sources like reclaimed water, where possible. Mosaic reuses or recycles water used in our Florida phosphates manufacturing facilities and Canadian potash facilities. As part of their larger water conservation efforts, the Bartow facility uses reverse osmosis to produce approximately 200 gallons per minute of treated water back for use at the facility's sulfuric acid plant, thereby reducing freshwater needs by the same amount.

Cost of management
8000000

Comment
It cost approximately $8.2 million to run the reverse osmosis plant at our Bartow facility in 2017. Savings from reduced reagent use for that period were approximately $500,000.

Identifier
Risk 5

Where in the value chain does the risk driver occur?
Direct operations

Risk type
Physical risk

Primary climate-related risk driver
Acute: Increased severity of extreme weather events such as cyclones and floods

Type of financial impact driver
Reduced revenue from decreased production capacity (e.g., transport difficulties, supply chain interruptions)

Company-specific description
Potential climate change risks that contribute to adverse weather conditions, including the impact of potential hurricanes, floods and excess rainfall could cause a loss of Mosaic's production and/or an increase in operating costs due to disruptions in our supply chain.

Time horizon
Short-term

Likelihood
About as likely as not

Magnitude of impact
Medium

Potential financial impact
5000000

Explanation of financial impact
Based on average production levels, if the Faustina, Louisiana plant were shut down for a week and production could not be diverted to another facility, quantifiable business interruption costs could be greater than $5 million.

Management method
We manage these potential climate change risks by engaging Mosaic's team of Supply Chain professionals to closely monitor product supply and demand and any weather conditions or seasonal patterns/risks (potentially climate change related) that could interfere with products reaching our customers. We also conduct property risk engineering assessments on an ongoing basis to address risk identifying and mitigating risks associated with property damage and business interruption. The types of actions that result from these assessments include improving existing flood and emergency response plans, replacing or redesigning roof structures to meet or exceed wind uplift requirements, and making enhancements to structures.

Cost of management
375000

Comment
Drought or flood conditions may require us to implement certain solutions to ensure we maintain acceptable inventory levels and meet customer demand. Mosaic may send product early, in anticipation of possible suspension of river traffic later in the season. This scenario could result in increased inventory storage expenses of $250 per day per barge. As a theoretical example, if we send 50 barges for one month (30 days) additional costs would be approximately $375,000. As another example, the approximate cost of installing fasteners to secure roof panels as a way to reduce and/or avoid damage and business interruption from hurricanes is...
C2.4

(C2.4) Have you identified any climate-related opportunities with the potential to have a substantive financial or strategic impact on your business?
Yes

C2.4a

(C2.4a) Provide details of opportunities identified with the potential to have a substantive financial or strategic impact on your business.

Identifier
Opp1

Where in the value chain does the opportunity occur?
Direct operations

Opportunity type
Energy source

Primary climate-related opportunity driver
Use of supportive policy incentives

Type of financial impact driver
Returns on investment in low-emission technology

Company-specific description
Various proposed legislation in the US promoting and incentivizing renewable energy production (potentially reduced greenhouse gas emissions) could provide Mosaic tax incentives and/or fairer pricing for surplus electricity that Mosaic supplies to local utility grids. As an example, Mosaic would benefit from tax incentives and/or fairer pricing for surplus electricity that Mosaic supplied in 2017, specifically in Florida, where we provided nearly 200,000 MWh to the local grid.

Time horizon
Short-term

Likelihood
Unlikely

Magnitude of impact
Medium

Potential financial impact
10000000

Explanation of financial impact
In 2017, Mosaic produced approximately 1.9 million MWh of electrical energy from cogeneration in our Phosphates business unit, and sent approximately 200,000 MWh to the local grid. In this business unit alone, the potential positive impacts (tax incentives and/or fairer pricing) of energy legislation could be upwards of $10 million.

Strategy to realize opportunity
In order to manage this opportunity, Mosaic has been actively involved in dialogues at the legislative and executive branch levels. We strongly support the enactment of a reasonable state energy policy in Florida, in which cost effective and abundant sources of renewable energy are encouraged and incentivized to diversify the state’s generation portfolio, while also advocating that ratepayer impacts be closely watched and minimized to avoid harm to Florida’s residents and businesses. We have engaged on myriad issues in the energy arena, from fairer pricing for the power we export to the utility grid, to tax credits and incentives to encourage the production of clean power. Mosaic continuously looks for opportunities to improve the efficiency and expand the output of our cogeneration assets. As a specific example of our management efforts, in 2016, Mosaic brought another turbo generator online at our Uncle Sam facility that is expected to provide an additional 15 megawatts of low-GHG electrical generation capacity. This initiative cost approximately $21 million. A power line connecting our South Pierce and South Pasture facilities, installed in 2016 at a price of $14 million, has allowed Mosaic to increase its internal use of cogenerated power. In 2017 we produced 1.9 million MWh
cogen, approximately 88% of which we consumed internally.

Cost to realize opportunity
14000000

Comment
The cost of engaging policymakers is not available as a separate line item. The investment in cogeneration examples cited above were in the range of $14-21 million.

Identifier
Opp2

Where in the value chain does the opportunity occur?
Direct operations

Opportunity type
Markets

Primary climate-related opportunity driver
Access to new markets

Type of financial impact driver
Increased revenues through access to new and emerging markets (e.g., partnerships with governments, development banks)

Company-specific description
Considering that the world will have to feed nine billion people by 2050, it is easy to see the importance of properly used mineral fertilizers in reducing future greenhouse gas emissions and preventing deforestation. Mosaic is one of the world's leading producers and marketers of concentrated phosphate and potash. As the number of people to feed in the world increases, Mosaic has an opportunity in the form of increased demand for existing products and services like our premium product line, MicroEssentials®

Time horizon
Long-term

Likelihood
About as likely as not

Magnitude of impact
Medium-high

Potential financial impact
60000000

Explanation of financial impact
If international pressure on regulation to improve fertilizer yields occurred, then Mosaic's production of MicroEssentials® as a percentage of total production may be further improved. Mosaic can potentially command a premium price and higher margins for our higher-yield products, potentially resulting in an overall increase of our gross margin as a percent of net sales. Therefore, this change in production percentage for higher-yield products like MicroEssentials® could have a positive effect on our operating results and financial condition. A hypothetical 2% increase in gross margin as a percentage of Phosphates Business Segment net sales, based on 2017 performance, would equate to approximately $63 million.

Strategy to realize opportunity
In order to manage this opportunity, Mosaic has established relationships with key universities around the globe to develop and test high-yield premium products, like MicroEssentials®. In 2017, Mosaic invested more than $900,000 in a university-based Fertilizer Technology and Research Centre. To further respond to and manage this risk, Mosaic has invested in expansion projects to increase MicroEssentials® production capacity. In 2014, Mosaic announced plans to expand MicroEssentials® capacity, adding an incremental 1.2 million tonnes and bringing our total capacity to 3.5 million tonnes in 2017.

Cost to realize opportunity
900000

Comment
In 2017, Mosaic invested more than $900,000 in a university-based Fertilizer Technology and Research Centre. Our investment in the MicroEssentials® production capacity is not currently available as a separate line item.

Identifier
Opp3

Where in the value chain does the opportunity occur?
Direct operations

Opportunity type
Products and services

Primary climate-related opportunity driver
Shift in consumer preferences

Type of financial impact driver
Better competitive position to reflect shifting consumer preferences, resulting in increased revenues

Company-specific description
Changes in rainfall patterns may make some regions of the world that have not been traditionally suited to large scale agriculture potentially productive. This change in production percentage for higher-yield products like MicroEssentials® may have a positive effect on our operating results and financial condition and the effects could be significant to us.

Time horizon
Long-term

Likelihood
About as likely as not

Magnitude of impact
Medium

Potential financial impact
90000000

Explanation of financial impact
Our Phosphates segment sold approximately 2.7 million tonnes of MicroEssentials® during 2017. A hypothetical increase of 10% in sales volume of MicroEssentials® from 2017 levels could result in over $90 million in additional sales (calculated by using the average selling price per tonne, FOB destination, per our 2017 Form 10-K).

Strategy to realize opportunity
Mosaic’s balanced approach to crop nutrition is a strategy to manage potential opportunities driven by the effects of climate change, such as change in precipitation pattern. Mosaic has established relationships with key universities and research organizations around the globe to develop and test innovative products like our MicroEssentials® line, which features crop nutrient blends specially designed for the soils of various parts of the world. Mosaic established and continues to fund a university-based Fertilizer Technology and Research Centre, which focuses on soil chemistry and fertilizer technology, and utilizes the latest technology to develop innovative fertilizer formulations to improve nutrient use efficiency in a variety of climates. Our investment in this centre in 2017 totaled more than $900,000.

Cost to realize opportunity
900000

Comment
In 2017, Mosaic invested more than $900,000 in a university-based Fertilizer Technology and Research Centre. Our investment in the MicroEssentials® production capacity is not currently available as a separate line item.
(C2.5) Describe where and how the identified risks and opportunities have impacted your business.

<table>
<thead>
<tr>
<th>Impact</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Products and services</td>
<td>Impacted In 2017 operating results were unfavorably impacted by Hurricane Irma which resulted in increased operating costs and delayed and lost sales and lost production in Florida. Specifically, the Phosphates segment’s third quarter gross margin includes $26 million of higher costs from Hurricane Irma which lowered the gross margin rate from 12 percent to nine percent during the third quarter.</td>
</tr>
<tr>
<td>Supply chain and/or value chain</td>
<td>Impacted for some suppliers, facilities, or product lines Our joint venture (JV) operation of the Miski Mayo mine in the Bayovar region of Peru was negatively impacted by flooding in the region in 2017. Phosphate rock from the JV operations supplements our overall phosphate rock needs. As a result of flooding, supply of phosphate rock from the JV was interrupted and we had to seek alternative sources of phosphate rock. The financial impact of this supply disruption was approximately $3 million in 2017. Note: these costs are an estimation of the incremental costs of purchasing rock from another supplier to supplement what we would have otherwise received from the Miski Mayo mine. This is not an estimation of the full financial impact associated with the flooding event.</td>
</tr>
<tr>
<td>Adaptation and mitigation activities</td>
<td>Impacted for some suppliers, facilities, or product lines We have more than $7 billion in assets in hurricane prone areas. We conduct property risk engineering assessments on an ongoing basis to identify and mitigate risks associated with property damage and business interruption. The types of actions that result from these assessments include improving existing flood and emergency response plans, replacing or redesigning roof structures to meet or exceed wind uplift requirements, and making enhancements to structures to protect from increased risk of severe weather events caused by climate changes. As an example of the cost associated with one such project, the cost to adapt a roof structure with fasteners to withstand high winds is approximately $150,000.</td>
</tr>
<tr>
<td>Investment in R&D</td>
<td>Impacted Mosaic has established relationships with key universities and research organizations around the globe to develop and test innovative products like our MicroEssentials® line. Mosaic established and continues to fund a University-based Fertilizer Technology and Research Centre, which focuses on soil chemistry and fertilizer technology and utilizes the latest technology to develop innovative fertilizer formulations to improve nutrient use efficiency in a variety of climate regimes. As an example of one of our R&D activities, we invested approximately $900,000 in a university-based Fertilizer Technology and Research Centre in 2017.</td>
</tr>
<tr>
<td>Operations</td>
<td>Impacted In 2017 sales volumes were unfavorably impacted by Hurricane Irma which resulted in delayed and lost sales and lost production in Florida. We also sustained approximately $7 million worth of property damage at one of our product warehouses.</td>
</tr>
</tbody>
</table>

C2.6
(C2.6) Describe where and how the identified risks and opportunities have factored into your financial planning process.

<table>
<thead>
<tr>
<th>Relevance</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Revenues</td>
<td>Impacted As part of our annual financial planning process, Mosaic's market analysis team monitors climate and growing regions, forecasting for climate-related events like droughts, floods and severe weather events, to determine their potential impact on the markets, our production (which translates to revenue) and Mosaic's overall financial performance. For example, a widespread flood might impact agricultural commodity markets, which could in turn have an effect on Mosaic's annual sales. In 2017 operating results were unfavorably impacted by Hurricane Irma which resulted in increased operating costs, delayed and lost sales and lost production in Florida. Specifically, the Phosphates segment’s third quarter gross margin includes $26 million of higher costs from Hurricane Irma which lowered the gross margin rate from 12 percent to nine percent during the third quarter.</td>
</tr>
<tr>
<td>Operating costs</td>
<td>Impacted As part of our annual financial planning process, we consider environmental, health and safety laws and regulations, some of which are climate-related, and their effect(s) on operating costs and capital expenditures. Severe climate-related events, including hurricanes, have in the past, and may in the future, adversely affect our operations, resulting in increased costs or decreased production. These impacts are part of our broad financial planning process. Mosaic's market analysis team monitors climate and growing regions, forecasting for climate-related events like droughts, floods and severe weather events, to determine their potential impact on the markets, our production (which translates to revenue) and Mosaic's overall financial performance. As another example that has yet to impact our operating costs, Mosaic is assessing the potential financial implications of federal and provincial carbon tax scenarios under consideration in Canada. Our evaluation is considering the operating cost impacts of direct energy consumption as well as indirect impacts of how the tax is passed on to Mosaic from third parties. Various scenarios are still under consideration and the effects of these potential tax scenarios could have a significant financial impact on us.</td>
</tr>
<tr>
<td>Capital expenditures / capital allocation</td>
<td>Not yet impacted As part of our annual financial planning process, we consider environmental, health and safety laws and regulations, some of which are climate-related, and their effect(s) on operating costs and capital expenditures. We also consider availability of capital expenditures for projects that could improve our environmental performance, including energy or GHG efficiency. As an example, Mosaic is assessing changes in emission allowances that will be effective by 2023 that will have an impact on some of our Phosphate concentrate facilities. Current equipment will not meet emissions requirements and we have initiated projects requiring capital expenditures to replace catalysts at the affected facilities. The approximate cost per catalyst replacement is $1 million and these planned costs, as well as the timeline for replacing the catalysts, are part of Mosaic’s capital expenditures planning process. As another example, Mosaic is assessing changes in emission allowances that will be effective in 2026 that will have significant impact on one of our Saskatchewan potash mines. Current boilers will not meet emissions requirements and we are exploring options, including equipment alterations that would require capital investments, in order to meet compliance standards. A capital project team has been assembled to conduct detailed analyses to assess solutions and the potential cost implications, but based on preliminary estimates, the financial impact could be more than $75 million.</td>
</tr>
<tr>
<td>Acquisitions and divestments</td>
<td>Not yet impacted At this time, our identified risks related to climate change have not had an impact on our company’s acquisitions and divestments. As part of the due diligence process leading up to our late 2017 acquisition of Vale Fertilizantes in Brazil, we considered the environmental performance, including GHG emissions footprint of facilities in the target company’s portfolio. The financial impact of our ultimate decision cannot be estimated as an individual line item.</td>
</tr>
<tr>
<td>Access to capital</td>
<td>Not yet impacted At this time, our identified risks related to climate change have not had an impact on our company’s access to capital. Mosaic understands that climate-related issues can have an impact on a company’s credit score, which could, in turn, impact their access to capital. We are employing adaptation and mitigation strategies and regularly engaging financial stakeholders in order to minimize and/or avoid such impacts.</td>
</tr>
<tr>
<td>Assets</td>
<td>Impacted Severe storms, including hurricanes, have in the past, and may in the future, adversely affect our operations, resulting in damage to operating assets, increased costs or decreased production. These impacts are part of our broad financial planning process. In 2017, several of our facilities (operating assets) sustained damage as a result of Hurricane Irma, specifically a product warehouse that resulted in approximately $7 million incurred for repairs/replacement. As an example, Mosaic is assessing changes in emission allowances that will be effective in 2026 that will have significant impact on one of our Saskatchewan potash mines. Current boilers (operating assets) will not meet emissions requirements and we are exploring options, including equipment alterations that would require capital investments, in order to meet compliance standards. A capital project team has been assembled to conduct detailed analyses to assess solutions and the potential cost implications, but based on preliminary estimates, the financial impact could be more than $75 million.</td>
</tr>
<tr>
<td>Liabilities</td>
<td>Impacted At this time, our identified risks related to climate change have not had an impact on our company’s liabilities. However, we are assessing the potential financial implications of federal and provincial carbon tax scenarios under consideration in Canada that could have an impact on our tax liabilities, and the effects could be material to us.</td>
</tr>
<tr>
<td>Other</td>
<td>Please select</td>
</tr>
</tbody>
</table>

C3. Business Strategy

C3.1

(C3.1) Are climate-related issues integrated into your business strategy?

Yes
(C3.1a) Does your organization use climate-related scenario analysis to inform your business strategy?

Yes, qualitative

(C-AC3.1b/C-CE3.1b/C-CH3.1b/C-CO3.1b/C-EU3.1b/C-FB3.1b/C-MM3.1b/C-OG3.1b/C-PF3.1b/C-ST3.1b/C-TO3.1b/C-TS3.1b)

Indicate whether your organization has developed a low-carbon transition plan to support the long-term business strategy.

In development, we plan to complete it within the next 2 years

(C3.1c) Explain how climate-related issues are integrated into your business objectives and strategy.

Mosaic's strategy and business objectives have been influenced by climate change in several ways. Climate related issues, specifically the Paris Agreement and related country-specific efforts to reduce greenhouse gas emissions, have influenced our engagement with stakeholders, including government and industry associations. Similarly, fertilizer production is an energy- and GHG-intensive activity. In anticipation of changing weather patterns, potential shortages of water, the possibility of increasing energy costs and possible carbon/energy taxes and their potential effects on our business, Mosaic employs a strategy that focuses on operational excellence and we have made strategic decisions about our operating activities in order to address operating efficiency and resource management. For example, we strive to lower purchased energy consumption through more efficient processes and maximizing use of cogenerated energy, which has a direct impact on our GHG emissions. Climate change considerations, and the focus on reducing energy and GHG emissions, have influenced our development and execution of our companywide 2020 Sustainability Targets to reduce energy and GHGs by 10% per tonne of finished product, progress toward which we report annually. As an example of a substantial business decision in 2017, in line with our strategic efforts to reduce energy and GHGs, in 2017 we completed installation of a solar array at our Carlsbad facility that powers the site's administration building and reduces their reliance on fossil-fuel based power.

(C3.1d) Provide details of your organization’s use of climate-related scenario analysis.

<table>
<thead>
<tr>
<th>Climate-related scenarios</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nationally determined contributions (NDCs)</td>
<td>We have facilities in Saskatchewan, Canada that could be affected by Canada's intended NDC, which aims to achieve, by 2030, an economy-wide target of reducing GHG emissions by 30% below 2005 levels. In late 2016, the federal government announced plans for a comprehensive tax on carbon emissions, under which provinces opting out of the tax would have the option of adopting a cap-and-trade system. In the plans, the federal government also committed to implementing a federal carbon pricing backstop system that will apply in any province or territory that does not have a carbon pricing system in place by 2018. While no tax has formally been proposed as of the date of our completing this report, as implementation of the Paris Agreement proceeds, more stringent laws and regulations may be enacted to accomplish the goals set out in Canada's NDC. In addition, the Province of Saskatchewan, in which our Canadian potash mines are located, has publicly stated that a carbon pricing system will not be implemented in the province and that legal action will be sought against the federal government. In December 2017, Saskatchewan announced a comprehensive plan to address climate change that does not include an economy-wide price on carbon but does include a system of tariffs and credits for large emitters. The plan is subject to federal review and approval in late 2018. We are currently assessing scenarios proposed by the provincial and federal governments, including potential financial repercussions. One federal scenario, for example, would apply a starting tax of $10 CAD per tonne of CO2e for businesses generating more than 50,000 tonnes CO2e. The tax would increase annually until 2022. Under this scenario, considering the 2022 time horizon, the financial repercussions for Mosaic, specifically our Potash Segment, could be significant to us. The results of our analyses have informed our CAPEX strategy as we plan for potential costs and continue to analyze options for reducing emissions in line with the NDC. Specifically, we have project trackers for each of our potash facilities that capture potential projects and associated costs, GHG and energy savings, and returns on investments.</td>
</tr>
</tbody>
</table>
C4. Targets and performance

C4.1

(C4.1) Did you have an emissions target that was active in the reporting year?
 Intensity target

C4.1b
Provide details of your emissions intensity target(s) and progress made against those target(s).

Target reference number
Int 1

Scope
Scope 1+2 (location-based)

% emissions in Scope
100

% reduction from baseline year
10

Metric
Metric tons CO2e per metric ton of product

Base year
2012

Start year
2015

Normalized baseline year emissions covered by target (metric tons CO2e)
0.27

Target year
2020

Is this a science-based target?
No, but we anticipate setting one in the next 2 years

% achieved (emissions)
100

Target status
Underway

Please explain
In 2015 we announced a target to reduce our combined Scope 1 and Scope 2 GHG emissions by 10% per tonne of finished product by 2020. In 2017 we achieved a 17.6% reduction in Scope 1 and 2 emissions from our 2012 baseline thanks, in part, to efforts of our employees to create fuel- and energy-saving projects across the business. The reduction is also due to a decrease of our ammonia production due to plant downtime, which reduced our annual consumption of natural gas considerably. Current GHG reduction targets are based on internal operational performance and cover Scope 1 and 2 emissions from operations in North and South America. Our GHG target, although not recognized by the Science Based Targets Initiative for being in line with their particular methodology, was developed with science-based models that take company and industry-specific factors into account. Our GHG target does not include Scope 3 emissions at this time. However, we made progress toward defining a more comprehensive Scope 3 emissions footprint in 2015 by engaging a third party consultant to help us assess the relevance of Scope 3 emissions categories and calculate their respective GHG impacts. We report those emissions in Section 6. We are currently refreshing targets that will incorporate our newly acquired facilities in Brazil and considering the feasibility of science-based targets as part of this work.

% change anticipated in absolute Scope 1+2 emissions
7.6

% change anticipated in absolute Scope 3 emissions
0

C4.2
(C4.2) Provide details of other key climate-related targets not already reported in question C4.1/a/b.

Target
Energy usage

KPI – Metric numerator
Energy Consumption

KPI – Metric denominator (intensity targets only)
Metric tonne of product

Base year
2012

Start year
2015

Target year
2020

KPI in baseline year
2.73

KPI in target year
2.46

% achieved in reporting year
100

Target Status
Underway

Please explain
In 2017, we achieved a 15.4% reduction in energy intensity from our 2012 baseline. This reduction was due to efficiency efforts, and also due to a decrease of our ammonia production due to plant downtime, which reduced our annual consumption of natural gas considerably.

Part of emissions target
This target, though considered separate from our emissions target, is directly linked to emissions because reductions in direct and indirect energy help drive emissions reductions. Both the energy and GHG emissions targets are part of Mosaic’s 2020 Sustainability Targets.

Is this target part of an overarching initiative?
No, it’s not part of an overarching initiative

(C4.3) Did you have emissions reduction initiatives that were active within the reporting year? Note that this can include those in the planning and/or implementation phases.

Yes

C4.3a
(C4.3a) Identify the total number of projects at each stage of development, and for those in the implementation stages, the estimated CO2e savings.

<table>
<thead>
<tr>
<th>Number of projects</th>
<th>Total estimated annual CO2e savings in metric tonnes CO2e (only for rows marked *)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under investigation</td>
<td>14</td>
</tr>
<tr>
<td>To be implemented*</td>
<td>10</td>
</tr>
<tr>
<td>Implementation commenced*</td>
<td>2</td>
</tr>
<tr>
<td>Implemented*</td>
<td>13</td>
</tr>
<tr>
<td>Not to be implemented</td>
<td>5</td>
</tr>
</tbody>
</table>

(C4.3b) Provide details on the initiatives implemented in the reporting year in the table below.

Activity type
Energy efficiency: Processes

Description of activity
Machine replacement

Estimated annual CO2e savings (metric tonnes CO2e)
1750

Scope
Scope 1

Voluntary/Mandatory
Voluntary

Annual monetary savings (unit currency – as specified in CC0.4)
150000

Investment required (unit currency – as specified in CC0.4)
400000

Payback period
1-3 years

Estimated lifetime of the initiative
6-10 years

Comment
By overhauling a product belt filter and making a valve upgrade, teams at Carlsbad improved efficiency of the product dryer and saved approximately 5% of the plant’s annual total natural gas use.

Activity type
Low-carbon energy installation

Description of activity
Solar PV

Estimated annual CO2e savings (metric tonnes CO2e)
51.7

Scope
Scope 2 (location-based)

Voluntary/Mandatory
Voluntary

Annual monetary savings (unit currency – as specified in CC0.4)
6800

Investment required (unit currency – as specified in CC0.4)
<table>
<thead>
<tr>
<th>Activity type</th>
<th>Description of activity</th>
<th>Estimated annual CO2e savings (metric tonnes CO2e)</th>
<th>Scope</th>
<th>Voluntary/Mandatory</th>
<th>Annual monetary savings (unit currency – as specified in CC0.4)</th>
<th>Investment required (unit currency – as specified in CC0.4)</th>
<th>Payback period</th>
<th>Estimated lifetime of the initiative</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy efficiency: Processes</td>
<td>Process optimization</td>
<td>2940</td>
<td>Scope 2 (location-based)</td>
<td>Voluntary</td>
<td>900000</td>
<td>0</td>
<td><1 year</td>
<td>6-10 years</td>
<td>The Riverview facility implemented more efficient processes to reduce the purchase of third-party produced power and enable internal use of cogenerated energy.</td>
</tr>
<tr>
<td>Energy efficiency: Building services</td>
<td>Lighting</td>
<td>2347</td>
<td>Scope 2 (location-based)</td>
<td>Voluntary</td>
<td>250000</td>
<td>2500000</td>
<td>4 - 10 years</td>
<td>6-10 years</td>
<td></td>
</tr>
</tbody>
</table>
We installed LED lights at facilities across our Phosphate and Potash segments. The annual dollar savings and payback figures are simplified and do not fully capture other tangible and intangible savings related to maintenance and safety.

Activity type
Energy efficiency: Processes

Description of activity
Machine replacement

Estimated annual CO2e savings (metric tonnes CO2e)
875

Scope
Scope 1

Voluntary/Mandatory
Voluntary

Annual monetary savings (unit currency – as specified in CC0.4)
2667280

Investment required (unit currency – as specified in CC0.4)
2370000

Payback period
<1 year

Estimated lifetime of the initiative
6-10 years

Comment
Changes to equipment at our Fospar distribution facility improved production capacity and decreased energy consumption.

Activity type
Other, please specify (Installed power line between facilities)

Description of activity
<Not Applicable>

Estimated annual CO2e savings (metric tonnes CO2e)
43344

Scope
Scope 2 (location-based)

Voluntary/Mandatory
Voluntary

Annual monetary savings (unit currency – as specified in CC0.4)
2500000

Investment required (unit currency – as specified in CC0.4)
14000000

Payback period
4 - 10 years

Estimated lifetime of the initiative
16-20 years

Comment
A recently installed power line connecting two of our Florida facilities allowed Mosaic to triple our internal use of cogenerated power at the South Pasture facility in 2017.

Activity type
Energy efficiency: Processes

Description of activity
Heat recovery
Estimated annual CO2e savings (metric tonnes CO2e)
2520

Scope
Scope 2 (location-based)

Voluntary/Mandatory
Voluntary

Annual monetary savings (unit currency – as specified in CC0.4)
1000000

Investment required (unit currency – as specified in CC0.4)
21000000

Payback period
16-20 years

Estimated lifetime of the initiative
>30 years

Comment
A recently installed turbo generator at our Uncle Sam facility enabled additional generation and consumption of cogenerated energy in 2017, displacing fossil fuel-based electricity we would have otherwise had to purchase from the grid.

Activity type
Energy efficiency: Processes

Description of activity
Machine replacement

Estimated annual CO2e savings (metric tonnes CO2e)
3353

Scope
Scope 1

Voluntary/Mandatory
Voluntary

Annual monetary savings (unit currency – as specified in CC0.4)
546000

Investment required (unit currency – as specified in CC0.4)
430000

Payback period
<1 year

Estimated lifetime of the initiative
16-20 years

Comment
A new furnace was installed and various improvements were made to the granulation line at our Fospar facility that resulted in improved efficiency and reduced fuel oil use.
(C4.3c) What methods do you use to drive investment in emissions reduction activities?

<table>
<thead>
<tr>
<th>Method</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Employee engagement</td>
<td>Mosaic emphasizes the philosophy of continuous energy improvements to improve energy use in our manufacturing facilities and support functions and recognizes that employees on the front line often have the best ideas. Mosaic fosters a culture which encourages employees to come forward with ideas, and this open dialogue has driven investments that result in energy savings and/or emissions reductions. In 2017, we continued an internal communications effort around “small wins” as a way to recognize employees for their efforts, large and small, in improving environmental performance and meeting companywide 2020 Sustainability Targets.</td>
</tr>
<tr>
<td>Other</td>
<td>Mosaic facilities have employees that are designated engineers and/or sustainability site leads. The role of these site leads, in part, is to identify project opportunities for improving energy efficiency and GHG emissions that will help us achieve our 2020 target to reduce energy use and GHG emissions by 10% per tonne of product.</td>
</tr>
<tr>
<td>Compliance with regulatory requirements/standards</td>
<td>New or proposed regulatory emissions requirements may require modifications to our facilities or to operating procedures and these modifications may involve significant investments.</td>
</tr>
</tbody>
</table>

(C4.5) Do you classify any of your existing goods and/or services as low-carbon products or do they enable a third party to avoid GHG emissions?

Yes

(C4.5a)
(C4.5a) Provide details of your products and/or services that you classify as low-carbon products or that enable a third party to avoid GHG emissions.

<table>
<thead>
<tr>
<th>Level of aggregation</th>
<th>Product</th>
</tr>
</thead>
</table>

Description of product/Group of products
Mosaic's premium product MicroEssentials® has been shown to increase corn yields an average of 7.2 bushels per acre, or 4.3%, compared to traditional fertilizer.

Are these low-carbon product(s) or do they enable avoided emissions?

Avoided emissions

Taxonomy, project or methodology used to classify product(s) as low-carbon or to calculate avoided emissions

Other, please specify (See Comment)

Other: US EPA Climate Leaders: Direct HFC and PFC Emissions from Manufacturing Refrigeration and Air Conditioning Equipment

US EPA Climate Leaders: Direct Emissions from Mobile Combustion Sources US EPA Mandatory Greenhouse Gas Reporting Rule: Subpart G (Ammonia) and Z (Phosphoric Acid)

US EPA Climate Leaders: Indirect Emissions from Purchases/Sales of Electricity and Steam Stoichiometric mass balance for reactive species containing CO2 or carbon compounds

Mass Balance from European Fertilizer Manufacturers Association Guidance for Ammonia Manufacturing

University of Missouri Extension: Agricultural Fuel Requirement Estimates for Selected Field Operations

GWP: IPCC Second Assessment Report (SAR - 100 year)

% revenue from low carbon product(s) in the reporting year
28

Comment

Mosaic's premium product MicroEssentials® has been shown to increase corn yields an average of 7.2 bushels per acre, or 4.3%, compared to traditional fertilizer. Assuming a 4.3% yield advantage with MicroEssentials®, a corn farmer with a 350 acre farm can theoretically produce yields similar to those from a 365.05 acre farm. By using MicroEssentials®, this farmer could avoid approximately 0.1816 tonnes of Scope 1 carbon emissions per year, through reduced corn harvesting equipment usage, resulting in greater yields with MicroEssentials® and fewer acres farmed. This theoretical example is fleshed out below to give an idea of annual scale of avoided emissions for 100 farms. The estimate takes into consideration the tonnes of CO2e/gallon generated by the diesel fuel needed for the operation of a corn harvester per acre. The potential yield of a 350 acre farm yielding 365.05 acres worth of crops was used as the baseline for this Scope 1 emissions savings. A 2.5 mph corn harvester (farming equipment) uses 1.15 gallons/acre of diesel fuel, which equates to 0.0120648 tonnesCO2e/gallon of diesel fuel. Assuming a 4.3% yield advantage with MicroEssentials®, a corn farmer with a 350 acre farm can theoretically produce yields similar to those from a 365.05 acre farm. This farmer could avoid approximately 0.1816 tonnes of Scope 1 carbon emissions per year by harvesting the same yield on a smaller area. For every 100 farms similar to this example equals a combined savings of 18.16 tonnes of Scope 1 carbon emissions per year. This is a theoretical example only. The percentage of total sales is for tonnes of MicroEssentials® as a share of total Phosphates sales tonnes. Sales for MicroEssentials® are not available as a separate line item expressed as revenue. Note for Methodology: US EPA Climate Leaders: Direct HFC and PFC Emissions from Manufacturing Refrigeration and Air Conditioning Equipment; The GHG Protocol: A Corporate Accounting and Reporting Standard; US EPA Climate Leaders: Direct Emissions from Mobile Combustion Sources US EPA Mandatory Greenhouse Gas Reporting Rule: Subpart G (Ammonia) and Z (Phosph. Acid); US EPA Climate Leaders: Indirect Emissions from Purchases/Sales of Electricity and Steam Stoichiometric mass balance for reactive species containing CO2 or carbon compounds; Mass Balance from European Fertilizer Manufacturers Association Guidance for Ammonia

C5. Emissions methodology

C5.1
(C5.1) Provide your base year and base year emissions (Scopes 1 and 2).

Scope 1

Base year start
January 1 2012

Base year end
December 31 2012

Base year emissions (metric tons CO2e)
2904196

Comment

Scope 2 (location-based)

Base year start
January 1 2012

Base year end
December 31 2012

Base year emissions (metric tons CO2e)
1605383

Comment

Scope 2 (market-based)

Base year start
January 1 2012

Base year end
December 31 2012

Base year emissions (metric tons CO2e)
1605383

Comment

(C5.2) Select the name of the standard, protocol, or methodology you have used to collect activity data and calculate Scope 1 and Scope 2 emissions.

US EPA Climate Leaders: Direct HFC and PFC Emissions from Manufacturing Refrigeration and Air Conditioning Equipment
US EPA Climate Leaders: Indirect Emissions from Purchases/ Sales of Electricity and Steam
US EPA Climate Leaders: Direct Emissions from Mobile Combustion Sources
US EPA Mandatory Greenhouse Gas Reporting Rule
Other, please specify (See 5.2a for details)

(C5.2a) Provide details of the standard, protocol, or methodology you have used to collect activity data and calculate Scope 1 and Scope 2 emissions.

Other 1: by stoichiometric mass balance for reactive species containing CO2 or carbon compounds to estimate emissions from materials used in water treatment

Other 2: mass balance from European Fertilizer Manufacturers Association Guidance for Ammonia Manufacturing to estimate emissions from ammonia production
C6. Emissions data

C6.1

(C6.1) What were your organization’s gross global Scope 1 emissions in metric tons CO2e?

Row 1

Gross global Scope 1 emissions (metric tons CO2e)
2430167

End-year of reporting period
<Not Applicable>

Comment

C6.2

(C6.2) Describe your organization’s approach to reporting Scope 2 emissions.

Row 1

Scope 2, location-based
We are reporting a Scope 2, location-based figure

Scope 2, market-based
We are reporting a Scope 2, market-based figure

Comment
Market based emissions available for most locations in the United States and Saskatchewan, representing 95% of our total Scope 2 emissions. We do not have market based emission factors available for sites in Brazil or Paraguay facilities at this time.

C6.3

(C6.3) What were your organization’s gross global Scope 2 emissions in metric tons CO2e?

Row 1

Scope 2, location-based
1741674

Scope 2, market-based (if applicable)
1762758

End-year of reporting period
<Not Applicable>

Comment

C6.4

(C6.4) Are there any sources (e.g. facilities, specific GHGs, activities, geographies, etc.) of Scope 1 and Scope 2 emissions that are within your selected reporting boundary which are not included in your disclosure?

Yes
C6.4a

(C6.4a) Provide details of the sources of Scope 1 and Scope 2 emissions that are within your selected reporting boundary which are not included in your disclosure.

Source
China and India Facilities

Relevance of Scope 1 emissions from this source
Emissions are not relevant

Relevance of location-based Scope 2 emissions from this source
Emissions are not relevant

Relevance of market-based Scope 2 emissions from this source (if applicable)
Emissions are not relevant

Explain why the source is excluded
Historically, Scope 1 and 2 emissions from these facilities have accounted for less than 0.1 percent of global company emissions. CY2017 emissions were not calculated for our China and India facilities

C6.5

(C6.5) Account for your organization’s Scope 3 emissions, disclosing and explaining any exclusions.

Purchased goods and services

Evaluation status
Relevant, calculated

Metric tonnes CO2e
2140000

Emissions calculation methodology
Ammonia purchased based on IPPC 2013 guidance for NH3 production with modern, natural gas NH3 plants.

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Explanation
Emissions from production of purchased ammonia. Ammonia, an input material to our final products, accounts for a majority of the environmental impacts associated with purchased goods and services. Accordingly, emissions associated with ammonia are currently calculated. This value was included in our 2017 data assurance process.
Capital goods

Evaluation status
Relevant, calculated

Metric tonnes CO2e
291600

Emissions calculation methodology
Calculated with third-party proprietary hybrid EEIO/LCA model in conjunction with company spend data to calculate absolute emissions from Mosaic’s capital goods (e.g., equipment). Figure represents emissions associated with capital expenditures data for 2017 from our North American operations. Some capital expenditures may have been inadvertently excluded. This value was not included in our 2017 data assurance process.

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Explanation
2017 emissions from capital expenditures associated with North American operations were calculated using an average factor from a third-party analysis of 2014 data that was applied to 2017 capital expenditures figures. Some capital expenditures may have been inadvertently excluded. This value was not included in our 2017 data assurance process.

Fuel-and-energy-related activities (not included in Scope 1 or 2)

Evaluation status
Relevant, calculated

Metric tonnes CO2e
447700

Emissions calculation methodology
Calculated by using average DEFRA emission factors for upstream emissions per unit of consumption of the relevant fuel and energy types based on internally-collected fuel use data.

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Explanation
Includes companywide fuels and electricity purchases. This value was not included in our 2017 data assurance process.

Upstream transportation and distribution

Evaluation status
Relevant, calculated

Metric tonnes CO2e
425700

Emissions calculation methodology
Calculations basis derived from GHG Protocol Technical Guidance for Calculating Scope 3 Emissions (April 2013). Road Transport calculations consider empty backhauling. Road Transport calculations based on miles traveled, tons hauled, average fuel efficiency and considers empty back hauling. Maritime Transport based on tons shipped, fuel efficiency, mileage, transport time and other factors including ship efficiency rating from RightShip. This value was included in our 2017 data assurance process.

Percentage of emissions calculated using data obtained from suppliers or value chain partners
100

Explanation
Includes movements by rail, truck, articulated barge and vessel in North American and some international transport. Does not include river barges in North America. We have started gathering emissions data from an additional rail transportation provider in 2017. This value was included in our 2017 data assurance process.
Waste generated in operations

Evaluation status
Not relevant, calculated

Metric tonnes CO2e
5400

Emissions calculation methodology
Calculated with average DEFRA and Eco-Invent emission factors for respective waste disposal methods. This value was not included in our 2017 data assurance process.

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Explanation
Does not include mining wastes.

Business travel

Evaluation status
Not relevant, calculated

Metric tonnes CO2e
2873

Emissions calculation methodology
Business Travel includes air and rail travel and uses DEFRA 2017 emission factors.

Percentage of emissions calculated using data obtained from suppliers or value chain partners
100

Explanation
Includes all corporate travel for Mosaic employees by rail and air. This value was included in our 2017 data assurance process.

Employee commuting

Evaluation status
Not relevant, explanation provided

Metric tonnes CO2e

Emissions calculation methodology

Percentage of emissions calculated using data obtained from suppliers or value chain partners

Explanation
Employee commuting is estimated to represent less than 1% of total scope 3 emissions.

Upstream leased assets

Evaluation status
Not relevant, explanation provided

Metric tonnes CO2e

Emissions calculation methodology

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Explanation
Upstream leased assets are estimated to represent less than 0.1% of total scope 3 emissions.
Downstream transportation and distribution

Evaluation status
Relevant, calculated

Metric tonnes CO2e
156200

Emissions calculation methodology
Calculations basis derived from GHG Protocol Technical Guidance for Calculating Scope 3 Emissions (April 2013). Road Transport calculations consider empty backhauling. Road Transport calculations based on miles travel, tons hauled, average fuel efficiency and considers empty back hauling. Maritime Transport based on tons shipped, fuel efficiency, mileage, transport time and other factors including ship efficiency rating from RightShip.

Percentage of emissions calculated using data obtained from suppliers or value chain partners

Explanation
Includes movements by rail, truck, articulated barge and vessel in North American and some international transport. Does not include river barges in North America. Excludes transport of products when customers arrange for transportation. This value was included in our 2017 data assurance process.

Processing of sold products

Evaluation status
Not relevant, calculated

Metric tonnes CO2e
3400

Emissions calculation methodology
Calculated based on average emissions intensity of processing products at Mosaic blending locations.

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Explanation
Includes all tonnes of crop nutrients sold in North America and assumes that they are blended at the distributor level. This value was not included in our annual data assurance process.

Use of sold products

Evaluation status
Relevant, calculated

Metric tonnes CO2e
538520

Emissions calculation methodology
Limited calculation based on the amount of nitrogen per tonne of finished phosphate product sold in 2017 using 2006 IPCC Guidelines for National Greenhouse Gas Inventories related to fertilizer use.

Percentage of emissions calculated using data obtained from suppliers or value chain partners
0

Explanation
In 2015 we engaged third party to evaluate the environmental impacts associated with activities across our value chain. Emissions associated with use of sold products, as reported here, are based on results of a limited assessment based strictly on the amount of nitrogen per tonne of finished phosphate product sold in 2017. We continue to engage industry resources to provide a more holistic emissions figure for this relevant scope 3 category. This value was not included in our annual data assurance process.
End of life treatment of sold products

Evaluation status
Not relevant, explanation provided

Metric tonnes CO2e

Emissions calculation methodology

Percentage of emissions calculated using data obtained from suppliers or value chain partners

Explanation
Not applicable. Mosaic's principle products are crop nutrients, which are applied to the soil and then taken up by plants; the plants can be used for human or animal food.

Downstream leased assets

Evaluation status
Not relevant, explanation provided

Metric tonnes CO2e

Emissions calculation methodology

Percentage of emissions calculated using data obtained from suppliers or value chain partners

Explanation
Not applicable to Mosaic operations. Most emissions from leased assets under Mosaic's operational control are included in Scope 1 and 2 inventories. The remainder are not material to total emissions footprint.

Franchises

Evaluation status
Not relevant, explanation provided

Metric tonnes CO2e

Emissions calculation methodology

Percentage of emissions calculated using data obtained from suppliers or value chain partners

Explanation
Not applicable to Mosaic operations. Mosaic does not operate franchises.

Investments

Evaluation status
Relevant, calculated

Metric tonnes CO2e

45700

Emissions calculation methodology
This figure represents emissions from energy consumption associated with Mosaic's 35% stake in the Miski Mayo joint venture.

Percentage of emissions calculated using data obtained from suppliers or value chain partners

100

Explanation
Represents emissions associated with Mosaic's stake in the Miski Mayo joint venture. This value was not included in our annual data assurance process.
Other (upstream)

Evaluation status
Not relevant, explanation provided

Metric tonnes CO2e

Emissions calculation methodology
Percentage of emissions calculated using data obtained from suppliers or value chain partners

Explanation
Not applicable to Mosaic operations. Upstream emissions accounted for above.

Other (downstream)

Evaluation status
Not relevant, explanation provided

Metric tonnes CO2e

Emissions calculation methodology
Percentage of emissions calculated using data obtained from suppliers or value chain partners

Explanation
Not applicable to Mosaic operations. Downstream emissions accounted for above.

C6.7

(C6.7) Are carbon dioxide emissions from biologically sequestered carbon relevant to your organization?
No

C6.10
(C6.10) Describe your gross global combined Scope 1 and 2 emissions for the reporting year in metric tons CO2e per unit currency total revenue and provide any additional intensity metrics that are appropriate to your business operations.

Intensity figure
0.0005627

Metric numerator (Gross global combined Scope 1 and 2 emissions)
4169220

Metric denominator
unit total revenue

Metric denominator: Unit total
7409400000

Scope 2 figure used
Location-based

% change from previous year
11.6

Direction of change
Decreased

Reason for change
In 2017, decreased ammonia production and efficiency improvements resulted in reduced CO2e emissions. Revenue also improved slightly year-over-year, improving our CO2e intensity per unit total revenue.

Intensity figure
0.221

Metric numerator (Gross global combined Scope 1 and 2 emissions)
4169220

Metric denominator
unit of production

Metric denominator: Unit total
18807101

Scope 2 figure used
Location-based

% change from previous year
16.3

Direction of change
Decreased

Reason for change
In 2017, decreased ammonia production and efficiency improvements reduced CO2e emissions, thus significantly improving our performance.

C7. Emissions breakdowns

C7.1

(C7.1) Does your organization have greenhouse gas emissions other than carbon dioxide?
Yes
C7.1a

(C7.1a) Break down your total gross global Scope 1 emissions by greenhouse gas type and provide the source of each used greenhouse warming potential (GWP).

<table>
<thead>
<tr>
<th>Greenhouse gas</th>
<th>Scope 1 emissions (metric tons of CO2e)</th>
<th>GWP Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>CO2</td>
<td>2425017</td>
<td>IPCC Fourth Assessment Report (AR4 - 100 year)</td>
</tr>
<tr>
<td>CH4</td>
<td>1942</td>
<td>IPCC Fourth Assessment Report (AR4 - 100 year)</td>
</tr>
<tr>
<td>N2O</td>
<td>3208</td>
<td>IPCC Fourth Assessment Report (AR4 - 100 year)</td>
</tr>
</tbody>
</table>

C7.2

(C7.2) Break down your total gross global Scope 1 emissions by country/region.

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>Scope 1 emissions (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States of America</td>
<td>1534377</td>
</tr>
<tr>
<td>Canada</td>
<td>867225</td>
</tr>
<tr>
<td>Brazil</td>
<td>28442</td>
</tr>
<tr>
<td>Paraguay</td>
<td>124</td>
</tr>
</tbody>
</table>

C7.3

(C7.3) Indicate which gross global Scope 1 emissions breakdowns you are able to provide.

By business division
By facility

C7.3a

(C7.3a) Break down your total gross global Scope 1 emissions by business division.

<table>
<thead>
<tr>
<th>Business division</th>
<th>Scope 1 emissions (metric ton CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphate</td>
<td>1498557</td>
</tr>
<tr>
<td>Potash</td>
<td>899427</td>
</tr>
<tr>
<td>International and Distribution</td>
<td>32184</td>
</tr>
</tbody>
</table>
Break down your total gross global Scope 1 emissions by business facility.

<table>
<thead>
<tr>
<th>Facility</th>
<th>Scope 1 emissions (metric tons CO2e)</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Faustina</td>
<td>627083</td>
<td>30.083384</td>
<td>-90.914391</td>
</tr>
<tr>
<td>New Wales</td>
<td>342385</td>
<td>27.832701</td>
<td>-82.051048</td>
</tr>
<tr>
<td>Bartow</td>
<td>141665</td>
<td>27.907545</td>
<td>-81.800537</td>
</tr>
<tr>
<td>Plant city</td>
<td>112264</td>
<td>28.169056</td>
<td>-82.141667</td>
</tr>
<tr>
<td>Uncle Sam</td>
<td>78773</td>
<td>30.037428</td>
<td>-90.827377</td>
</tr>
<tr>
<td>Riverview</td>
<td>142136</td>
<td>27.860191</td>
<td>-82.3936</td>
</tr>
<tr>
<td>Four Corners</td>
<td>23791</td>
<td>27.646202</td>
<td>-82.087097</td>
</tr>
<tr>
<td>Green Bay</td>
<td>0</td>
<td>27.820769</td>
<td>-81.784767</td>
</tr>
<tr>
<td>South Fort Meade</td>
<td>10611</td>
<td>27.647848</td>
<td>-81.756477</td>
</tr>
<tr>
<td>South Pierce</td>
<td>10884</td>
<td>27.765583</td>
<td>-81.940331</td>
</tr>
<tr>
<td>South Pasture</td>
<td>5754</td>
<td>27.585763</td>
<td>-81.94291</td>
</tr>
<tr>
<td>Wingate</td>
<td>2710</td>
<td>27.504131</td>
<td>-82.130203</td>
</tr>
<tr>
<td>Hookers Prairie</td>
<td>0</td>
<td>27.917828</td>
<td>-82.437286</td>
</tr>
<tr>
<td>Big Bend</td>
<td>432</td>
<td>27.80416</td>
<td>-82.397083</td>
</tr>
<tr>
<td>Taft</td>
<td>0</td>
<td>30.019122</td>
<td>-90.774707</td>
</tr>
<tr>
<td>Belle Plaine</td>
<td>672126</td>
<td>50.427658</td>
<td>-105.198296</td>
</tr>
<tr>
<td>Esterhazy K2</td>
<td>95429</td>
<td>50.6578</td>
<td>-101.848412</td>
</tr>
<tr>
<td>Colonsey</td>
<td>49443</td>
<td>51.934105</td>
<td>-105.763496</td>
</tr>
<tr>
<td>Esterhazy K1</td>
<td>46808</td>
<td>50.729282</td>
<td>-101.933723</td>
</tr>
<tr>
<td>Carlsbad</td>
<td>32202</td>
<td>32.412258</td>
<td>-103.93217</td>
</tr>
<tr>
<td>Esterhazy K3</td>
<td>3418</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fospar</td>
<td>26026</td>
<td>-25.510841</td>
<td>-48.521633</td>
</tr>
<tr>
<td>Tampa Marine</td>
<td>376</td>
<td>27.926672</td>
<td>-82.43187</td>
</tr>
<tr>
<td>Houston</td>
<td>1101</td>
<td>29.744053</td>
<td>-95.114723</td>
</tr>
<tr>
<td>Savage</td>
<td>201</td>
<td>44.779415</td>
<td>-93.356426</td>
</tr>
<tr>
<td>Henderson</td>
<td>1758</td>
<td>37.815159</td>
<td>-87.658173</td>
</tr>
<tr>
<td>Paranaguia</td>
<td>274</td>
<td>-25.510841</td>
<td>-48.521633</td>
</tr>
<tr>
<td>Uberaba</td>
<td>71</td>
<td>-19.982393</td>
<td>-47.900391</td>
</tr>
<tr>
<td>Alto Arguaia</td>
<td>93</td>
<td>-17.151678</td>
<td>53.192689</td>
</tr>
<tr>
<td>Rio Verde</td>
<td>86</td>
<td>-17.807942</td>
<td>-51.008695</td>
</tr>
<tr>
<td>Candeias</td>
<td>59</td>
<td>-12.66295</td>
<td>-38.51944</td>
</tr>
<tr>
<td>Sorriso</td>
<td>167</td>
<td>-12.604993</td>
<td>-55.749907</td>
</tr>
<tr>
<td>Pekin</td>
<td>78</td>
<td>40.587875</td>
<td>-89.660637</td>
</tr>
<tr>
<td>Campo Grande</td>
<td>112</td>
<td>-21.258281</td>
<td>-48.492311</td>
</tr>
<tr>
<td>Paranagua II</td>
<td>296</td>
<td>-25.531969</td>
<td>-48.549938</td>
</tr>
<tr>
<td>Uberaba II</td>
<td>80</td>
<td>-19.788737</td>
<td>-47.943228</td>
</tr>
<tr>
<td>Villeta</td>
<td>124</td>
<td>-25.667817</td>
<td>-57.690011</td>
</tr>
<tr>
<td>Rondonopolis</td>
<td>368</td>
<td>-16.619864</td>
<td>-54.701082</td>
</tr>
<tr>
<td>Catalao</td>
<td>101</td>
<td>-18.190415</td>
<td>-47.970764</td>
</tr>
<tr>
<td>Hopewell</td>
<td>0</td>
<td>27.915899</td>
<td>-82.131219</td>
</tr>
<tr>
<td>Bonnie</td>
<td>69</td>
<td>27.863068</td>
<td>-81.932498</td>
</tr>
<tr>
<td>Hookers Point</td>
<td>0</td>
<td>27.917532</td>
<td>-82.439013</td>
</tr>
<tr>
<td>Port Sutton</td>
<td>103</td>
<td>27.905096</td>
<td>-82.410554</td>
</tr>
<tr>
<td>Rio Grande II</td>
<td>708</td>
<td>-32.102711</td>
<td>-52.113065</td>
</tr>
</tbody>
</table>

C-CE7.4/C-CH7.4/C-CO7.4/C-EU7.4/C-MM7.4/C-OG7.4/C-ST7.4/C-TO7.4/C-TS7.4
Break down your organization’s total gross global Scope 1 emissions by sector production activity in metric tons CO2e.

<table>
<thead>
<tr>
<th>Comment</th>
<th>Gross Scope 1 emissions, metric tons CO2e</th>
<th>Net Scope 1 emissions, metric tons CO2e</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement production activities</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Chemicals production activities</td>
<td>1481217</td>
<td><Not Applicable></td>
<td>This emissions total represents the sum of all phosphates concentrates (chemical manufacturing) facilities.</td>
</tr>
<tr>
<td>Coal production activities</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Electric utility generation activities</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Metals and mining production activities</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Oil and gas production activities (upstream)</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Oil and gas production activities (downstream)</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Steel production activities</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Transport OEM activities</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Transport services activities</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

(C7.5) Break down your total gross global Scope 2 emissions by country/region.

<table>
<thead>
<tr>
<th>Country/Region</th>
<th>Scope 2, location-based (metric tons CO2e)</th>
<th>Scope 2, market-based (metric tons CO2e)</th>
<th>Purchased and consumed electricity, heat, steam or cooling (MWh)</th>
<th>Purchased and consumed low-carbon electricity, heat, steam or cooling accounted in market-based approach (MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States of America</td>
<td>903302</td>
<td>1056769</td>
<td>1668024.86</td>
<td>0</td>
</tr>
<tr>
<td>Canada</td>
<td>831000</td>
<td>696617</td>
<td>1083386.67</td>
<td>0.8</td>
</tr>
<tr>
<td>Brazil</td>
<td>6604</td>
<td>6604</td>
<td>35399.29</td>
<td>0</td>
</tr>
<tr>
<td>Paraguay</td>
<td>766</td>
<td>766</td>
<td>1227.45</td>
<td>0</td>
</tr>
</tbody>
</table>

(C7.6) Indicate which gross global Scope 2 emissions breakdowns you are able to provide.

By business division
By facility

(C7.6a) Break down your total gross global Scope 2 emissions by business division.

<table>
<thead>
<tr>
<th>Business division</th>
<th>Scope 2, location-based emissions (metric tons CO2e)</th>
<th>Scope 2, market-based emissions (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phosphate</td>
<td>803917</td>
<td>962110</td>
</tr>
<tr>
<td>Potash</td>
<td>914227</td>
<td>779844</td>
</tr>
<tr>
<td>International and Distribution</td>
<td>19056</td>
<td>20802</td>
</tr>
</tbody>
</table>
(C7.6b) Break down your total gross global Scope 2 emissions by business facility.

<table>
<thead>
<tr>
<th>Facility</th>
<th>Scope 2 location-based emissions (metric tons CO2e)</th>
<th>Scope 2, market-based emissions (metric tons CO2e)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belle Plaine</td>
<td>27012</td>
<td>22644</td>
</tr>
<tr>
<td>Carlsbad</td>
<td>83226</td>
<td>83226</td>
</tr>
<tr>
<td>Big Bend</td>
<td>1382</td>
<td>1686</td>
</tr>
<tr>
<td>Bonnie</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bartow</td>
<td>61168</td>
<td>74854</td>
</tr>
<tr>
<td>Faustina</td>
<td>38667</td>
<td>22835</td>
</tr>
<tr>
<td>Green Bay</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Colonsay</td>
<td>135292</td>
<td>113413</td>
</tr>
<tr>
<td>Mulberry</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Nichols</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>New Wales</td>
<td>8640</td>
<td>10593</td>
</tr>
<tr>
<td>Plant City</td>
<td>36727</td>
<td>44727</td>
</tr>
<tr>
<td>Riverview</td>
<td>11099</td>
<td>13552</td>
</tr>
<tr>
<td>South Pierce</td>
<td>4820</td>
<td>5883</td>
</tr>
<tr>
<td>Taft</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Uncle Sam</td>
<td>4473</td>
<td>2642</td>
</tr>
<tr>
<td>Henderson</td>
<td>2310</td>
<td>2310</td>
</tr>
<tr>
<td>Hookers Point</td>
<td>1456</td>
<td>1766</td>
</tr>
<tr>
<td>Houston</td>
<td>474</td>
<td>474</td>
</tr>
<tr>
<td>Pekin</td>
<td>260</td>
<td>260</td>
</tr>
<tr>
<td>Port Sutton</td>
<td>1344</td>
<td>1630</td>
</tr>
<tr>
<td>Savage</td>
<td>443</td>
<td>443</td>
</tr>
<tr>
<td>Tampa Marine</td>
<td>422</td>
<td>512</td>
</tr>
<tr>
<td>Esterhazy K1</td>
<td>217547</td>
<td>182368</td>
</tr>
<tr>
<td>Esterhazy K2</td>
<td>440039</td>
<td>368880</td>
</tr>
<tr>
<td>Esterhazy K3</td>
<td>11109</td>
<td>9311</td>
</tr>
<tr>
<td>Alto Arguaia</td>
<td>43.6</td>
<td>43.6</td>
</tr>
<tr>
<td>Candeias</td>
<td>33.2</td>
<td>33.2</td>
</tr>
<tr>
<td>Campo Grande</td>
<td>7.1</td>
<td>7.1</td>
</tr>
<tr>
<td>Catalao</td>
<td>786.4</td>
<td>786.4</td>
</tr>
<tr>
<td>Fospao</td>
<td>2398</td>
<td>2398</td>
</tr>
<tr>
<td>Paranagua</td>
<td>121.5</td>
<td>121.5</td>
</tr>
<tr>
<td>Paranagua II</td>
<td>827.4</td>
<td>827.4</td>
</tr>
<tr>
<td>Rondonopolis</td>
<td>746.7</td>
<td>746.7</td>
</tr>
<tr>
<td>Rio Verde</td>
<td>61.5</td>
<td>61.5</td>
</tr>
<tr>
<td>Sorriso</td>
<td>122.98</td>
<td>122.98</td>
</tr>
<tr>
<td>Uberaba</td>
<td>17.28</td>
<td>17.28</td>
</tr>
<tr>
<td>Uberaba II</td>
<td>215.7</td>
<td>215.7</td>
</tr>
<tr>
<td>Villeta</td>
<td>766.3</td>
<td>766.3</td>
</tr>
<tr>
<td>Four Corners</td>
<td>314012</td>
<td>384678</td>
</tr>
<tr>
<td>Fort Green</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hookers Prairie</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Hopewell</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Kingsford</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Lonesome</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>South Fort Meade</td>
<td>132591</td>
<td>162269</td>
</tr>
<tr>
<td>South Pasture</td>
<td>114332</td>
<td>140019</td>
</tr>
<tr>
<td>Wingate</td>
<td>80474</td>
<td>98367</td>
</tr>
<tr>
<td>Streamsong</td>
<td>4974</td>
<td>6032</td>
</tr>
<tr>
<td>Rio Grande</td>
<td>1223</td>
<td>1223</td>
</tr>
</tbody>
</table>
(C-CE7.7/C-CH7.7/C-CO7.7/C-MM7.7/C-OG7.7/C-ST7.7/C-TO7.7/C-TS7.7) Break down your organization’s total gross global Scope 2 emissions by sector production activity in metric tons CO2e.

<table>
<thead>
<tr>
<th>Sector</th>
<th>Scope 2, location-based, metric tons CO2e</th>
<th>Scope 2, market-based (if applicable), metric tons CO2e</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cement production activities</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Chemicals production activities</td>
<td>167996</td>
<td>177487</td>
<td>This emissions total represents the sum of all phosphates concentrates (chemical manufacturing) facilities.</td>
</tr>
<tr>
<td>Coal production activities</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Metals and mining production activities</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Oil and gas production activities (upstream)</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Oil and gas production activities (downstream)</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Steel production activities</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Transport OEM activities</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Transport services activities</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
</tbody>
</table>

C-CH7.8

(C-CH7.8) Disclose the percentage of your organization’s Scope 3, Category 1 emissions by purchased chemical feedstock.

<table>
<thead>
<tr>
<th>Purchased feedstock</th>
<th>Percentage of Scope 3, Category 1 tCO2e from purchased feedstock</th>
<th>Explain calculation methodology</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia</td>
<td>100</td>
<td>GHG impacts from the purchase of ammonia represent approximately 50% of Mosaic’s total scope 3 impact. At this time, our reporting of category 1 includes only ammonia purchases, which represent our most material category 1 emissions. Accordingly, we are reporting 100% of category 1 emissions are from a purchased feedstock. Calculations basis derived from GHG Protocol Technical Guidance for Calculating Scope 3 Emissions (April 2013). Emission factors based on GHG Emissions from Transport or Mobile sources (GHG Protocol May 2015). Ammonia purchased based on IPPC 2013 guidance for NH3 production with modern, natural gas NH3 plants.</td>
</tr>
</tbody>
</table>

C-CH7.8a

(C-CH7.8a) Disclose sales of products that are greenhouse gases.

<table>
<thead>
<tr>
<th>Product</th>
<th>Sales, metric tons</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carbon dioxide (CO2)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Methane (CH4)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrous oxide (N2O)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Hydrofluorocarbons (HFC)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Perfluorocarbons (PFC)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Sulphur hexafluoride (SF6)</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>Nitrogen trifluoride (NF3)</td>
<td>0</td>
<td></td>
</tr>
</tbody>
</table>

C7.9
(C7.9) How do your gross global emissions (Scope 1 and 2 combined) for the reporting year compare to those of the previous reporting year?
Decreased

C7.9a

(C7.9a) Identify the reasons for any change in your gross global emissions (Scope 1 and 2 combined) and for each of them specify how your emissions compare to the previous year.

<table>
<thead>
<tr>
<th>Change in emissions (metric tons CO2e)</th>
<th>Change in renewable energy consumption</th>
<th>Other emissions reduction activities</th>
<th>Change in output</th>
<th>Change in methodology</th>
<th>Change in boundary</th>
<th>Change in physical operating conditions</th>
<th>Unidentified</th>
<th>Other</th>
</tr>
</thead>
<tbody>
<tr>
<td>Change in emissions (metric tons CO2e)</td>
<td>0</td>
<td>57181</td>
<td>199132</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>132682</td>
<td>0</td>
</tr>
<tr>
<td>Direction of change</td>
<td>No change</td>
<td>Decreased</td>
<td>Decreased</td>
<td>No change</td>
<td>No change</td>
<td>No change</td>
<td>Decreased</td>
<td>No change</td>
</tr>
<tr>
<td>Emissions value (percentage)</td>
<td>0</td>
<td>1.25</td>
<td>4.4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0.4</td>
<td>0</td>
</tr>
<tr>
<td>Please explain calculation</td>
<td>Due to ‘other emissions reduction activities’ implemented during the year, emissions were reduced from last year. Last year 57,181 tons of CO2e were reduced by our emissions reduction projects. Our total Scope 1 and Scope 2 emissions in the previous year was 4558215 tCO2e. We arrived at -1.25% through (57181/4558215)*100 = 1.25 % Decrease in part due to energy efficiency and emissions projects reported in 4.3 b.</td>
<td>Due to 'change in output' that occurred during the year, emissions were reduced from previous year. Last year 199,132 tons of CO2e were reduced due to lower ammonia production. Our total Scope 1 and Scope 2 emissions in the previous year was 4,558,215 tCO2e. We arrived at -4.4% through (199132/4558215)*100 = -4.4%. Decrease in part due to energy efficiency and emissions projects reported in 4.3 b. and a decrease in ammonia production</td>
<td>Due to ‘change in output’ that occurred during the year, emissions were reduced from previous year. Last year 199,132 tons of CO2e were reduced due to lower ammonia production. Our total Scope 1 and Scope 2 emissions in the previous year was 4,558,215 tCO2e. We arrived at -4.4% through (199132/4558215)*100 = -4.4%. Decrease in part due to energy efficiency and emissions projects reported in 4.3 b. and a decrease in ammonia production</td>
<td>Due to ‘change in output’ that occurred during the year, emissions were reduced from previous year. Last year 199,132 tons of CO2e were reduced due to lower ammonia production. Our total Scope 1 and Scope 2 emissions in the previous year was 4,558,215 tCO2e. We arrived at -4.4% through (199132/4558215)*100 = -4.4%. Decrease in part due to energy efficiency and emissions projects reported in 4.3 b. and a decrease in ammonia production</td>
<td>Due to ‘unidentified’ reasons, emissions were lower then previous year. Last year 132,682 tons of CO2e were reduced via means we could not readily separate. Our total Scope 1 and Scope 2 emissions in the previous year was 4558215 tCO2e. We arrived at -3.11% through (132682/4558215)*100 = 3.11 %. Decrease in part due to the impacts of weather on operations and variability in production activities.</td>
<td>Due to ‘unidentified’ reasons, emissions were lower then previous year. Last year 132,682 tons of CO2e were reduced via means we could not readily separate. Our total Scope 1 and Scope 2 emissions in the previous year was 4558215 tCO2e. We arrived at -3.11% through (132682/4558215)*100 = 3.11 %. Decrease in part due to the impacts of weather on operations and variability in production activities.</td>
<td>Due to ‘unidentified’ reasons, emissions were lower then previous year. Last year 132,682 tons of CO2e were reduced via means we could not readily separate. Our total Scope 1 and Scope 2 emissions in the previous year was 4558215 tCO2e. We arrived at -3.11% through (132682/4558215)*100 = 3.11 %. Decrease in part due to the impacts of weather on operations and variability in production activities.</td>
<td>0</td>
</tr>
</tbody>
</table>

C7.9b

(C7.9b) Are your emissions performance calculations in C7.9 and C7.9a based on a location-based Scope 2 emissions figure or a market-based Scope 2 emissions figure?
Location-based

C8. Energy
(C8.1) What percentage of your total operational spend in the reporting year was on energy?
More than 5% but less than or equal to 10%

C8.2

(C8.2) Select which energy-related activities your organization has undertaken.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Indicate whether your organization undertakes this energy-related activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of fuel (excluding feedstocks)</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumption of purchased or acquired electricity</td>
<td>Yes</td>
</tr>
<tr>
<td>Consumption of purchased or acquired heat</td>
<td>No</td>
</tr>
<tr>
<td>Consumption of purchased or acquired steam</td>
<td>No</td>
</tr>
<tr>
<td>Consumption of purchased or acquired cooling</td>
<td>No</td>
</tr>
<tr>
<td>Generation of electricity, heat, steam, or cooling</td>
<td>Yes</td>
</tr>
</tbody>
</table>

C8.2a

(C8.2a) Report your organization's energy consumption totals (excluding feedstocks) in MWh.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Heating value</th>
<th>MWh from renewable sources</th>
<th>MWh from non-renewable sources</th>
<th>Total MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of fuel (excluding feedstock)</td>
<td>LHV (lower heating value)</td>
<td>0</td>
<td>7407894</td>
<td>7407894</td>
</tr>
<tr>
<td>Consumption of purchased or acquired electricity</td>
<td><Not Applicable></td>
<td>73</td>
<td>2787967</td>
<td>2788040</td>
</tr>
<tr>
<td>Consumption of purchased or acquired heat</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Consumption of purchased or acquired steam</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Consumption of purchased or acquired cooling</td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
<td><Not Applicable></td>
</tr>
<tr>
<td>Consumption of self-generated non-fuel renewable energy</td>
<td><Not Applicable></td>
<td>0</td>
<td><Not Applicable></td>
<td>0</td>
</tr>
<tr>
<td>Total energy consumption</td>
<td><Not Applicable></td>
<td>73</td>
<td>10195861</td>
<td>10195934</td>
</tr>
</tbody>
</table>

C-CH8.2a

(C-CH8.2a) Report your organization's energy consumption totals (excluding feedstocks) for chemical production activities in MWh.

<table>
<thead>
<tr>
<th>Activity</th>
<th>Heating value</th>
<th>Total MWh</th>
</tr>
</thead>
<tbody>
<tr>
<td>Consumption of fuel (excluding feedstock)</td>
<td>LHV (lower heating value)</td>
<td>2289905</td>
</tr>
<tr>
<td>Consumption of purchased or acquired electricity</td>
<td><Not Applicable></td>
<td>349589</td>
</tr>
<tr>
<td>Consumption of purchased or acquired heat</td>
<td><Not Applicable></td>
<td></td>
</tr>
<tr>
<td>Consumption of purchased or acquired steam</td>
<td><Not Applicable></td>
<td></td>
</tr>
<tr>
<td>Consumption of purchased or acquired cooling</td>
<td><Not Applicable></td>
<td></td>
</tr>
<tr>
<td>Consumption of self-generated non-fuel renewable energy</td>
<td><Not Applicable></td>
<td>0</td>
</tr>
<tr>
<td>Total energy consumption</td>
<td><Not Applicable></td>
<td>2639494</td>
</tr>
</tbody>
</table>

C8.2b
(C8.2b) Select the applications of your organization’s consumption of fuel.

<table>
<thead>
<tr>
<th>Consumption of fuel</th>
<th>Indicate whether your organization undertakes this fuel application</th>
</tr>
</thead>
<tbody>
<tr>
<td>for the generation of electricity</td>
<td>Yes</td>
</tr>
<tr>
<td>for the generation of steam</td>
<td>Yes</td>
</tr>
<tr>
<td>for the generation of cooling</td>
<td>No</td>
</tr>
<tr>
<td>for co-generation or tri-generation</td>
<td>Yes</td>
</tr>
</tbody>
</table>

(C8.2c) State how much fuel in MWh your organization has consumed (excluding feedstocks) by fuel type.

Fuels (excluding feedstocks)

Diesel

Heating value
LHV (lower heating value)

Total fuel MWh consumed by the organization
326173

MWh fuel consumed for the self-generation of electricity
0

MWh fuel consumed for self-generation of heat
0

MWh fuel consumed for self-generation of steam
0

MWh fuel consumed for self-generation of cooling
<Not Applicable>

MWh fuel consumed for self- cogeneration or self-trigeneration
0

Natural Gas

Heating value
LHV (lower heating value)

Total fuel MWh consumed by the organization
6969376

MWh fuel consumed for the self-generation of electricity
0

MWh fuel consumed for self-generation of heat
3558547

MWh fuel consumed for self-generation of steam
0

MWh fuel consumed for self-generation of cooling
<Not Applicable>

MWh fuel consumed for self- cogeneration or self-trigeneration
3410828

Propane Gas

Heating value

<table>
<thead>
<tr>
<th>Fuel Type</th>
<th>Heating Value</th>
<th>Total fuel MWh consumed by the organization</th>
<th>MWh fuel consumed for the self-generation of electricity</th>
<th>MWh fuel consumed for self-generation of heat</th>
<th>MWh fuel consumed for self-generation of steam</th>
<th>MWh fuel consumed for self-generation of cooling</th>
<th>MWh fuel consumed for self-cogeneration or self-trigeneration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Motor Gasoline</td>
<td>LHV (lower heating value)</td>
<td>2748.05</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td><Not Applicable></td>
<td>0</td>
</tr>
<tr>
<td>Fuel Oil Number 1</td>
<td>LHV (lower heating value)</td>
<td>27850.83</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td><Not Applicable></td>
<td>0</td>
</tr>
<tr>
<td></td>
<td></td>
<td>81745</td>
<td>0</td>
<td>81745</td>
<td>0</td>
<td><Not Applicable></td>
<td>0</td>
</tr>
</tbody>
</table>
(C8.2d) List the average emission factors of the fuels reported in C8.2c.

Diesel

Emission factor
10.3

Unit
kg CO2e per gallon

Emission factor source
Pg. 29 The Climate Registry Default Emission Factors, revised March 2017

Comment
Number represents the summation of CO2, N2O and CH4 emissions converted to CO2e using base factors of 25 for CH4 and 298 for N2O as per IPCC Fourth Assessment Report (AR4).

Fuel Oil Number 1

Emission factor
11.3

Unit
kg CO2e per gallon

Emission factor source
Pg. 29 The Climate Registry Default Emission Factors, revised March 2017

Comment
Number represents the summation of CO2, N2O and CH4 emissions converted to CO2e using base factors of 25 for CH4 and 298 for N2O as per IPCC Fourth Assessment Report (AR4).

Motor Gasoline

Emission factor
8.86

Unit
kg CO2e per gallon

Emission factor source
Pg. 29 The Climate Registry Default Emission Factors, revised March 2017 (page 29)

Comment
Number represents the summation of CO2, N2O and CH4 emissions converted to CO2e using base factors of 25 for CH4 and 298 for N2O as per IPCC Fourth Assessment Report (AR4).

Natural Gas

Emission factor
53.1

Unit
kg CO2e per million Btu

Emission factor source
Pg. 2 The Climate Registry Default Emission Factors, revised March 2017

Comment
Number represents the summation of CO2, N2O and CH4 emissions converted to CO2e using base factors of 25 for CH4 and 298 for N2O as per IPCC Fourth Assessment Report (AR4).
Propane Gas

Emission factor
1.55

Unit
kg CO2e per liter

Emission factor source
EPA / Pg. 31 The Climate Registry Default Emission Factors, revised March 2017

Comment
Number represents the summation of CO2, N2O and CH4 emissions converted to CO2e using base factors of 25 for CH4 and 298 for N2O as per IPCC Fourth Assessment Report (AR4).

C8.2e

(C8.2e) Provide details on the electricity, heat, steam, and cooling your organization has generated and consumed in the reporting year.

<table>
<thead>
<tr>
<th></th>
<th>Total Gross generation (MWh)</th>
<th>Generation that is consumed by the organization (MWh)</th>
<th>Gross generation from renewable sources (MWh)</th>
<th>Generation from renewable sources that is consumed by the organization (MWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>2060004</td>
<td>1853406</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Heat</td>
<td>7051121</td>
<td>7051121</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Steam</td>
<td>17251243</td>
<td>17251243</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Cooling</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

C-CH8.2e

(C-CH8.2e) Provide details on electricity, heat, steam, and cooling your organization has generated and consumed for chemical production activities.

<table>
<thead>
<tr>
<th></th>
<th>Total gross generation (MWh) inside chemicals sector boundary</th>
<th>Generation that is consumed (MWh) inside chemicals sector boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>1752926</td>
<td>1225361.7</td>
</tr>
<tr>
<td>Heat</td>
<td>3640292</td>
<td>3640292</td>
</tr>
<tr>
<td>Steam</td>
<td>17251243</td>
<td>17251243</td>
</tr>
<tr>
<td>Cooling</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

C8.2f
(C8.2f) Provide details on the electricity, heat, steam and/or cooling amounts that were accounted for at a low-carbon emission factor in the market-based Scope 2 figure reported in C6.3.

Basis for applying a low-carbon emission factor
Power Purchase Agreement (PPA) with energy attribute certificates

Low-carbon technology type
Wind

MWh consumed associated with low-carbon electricity, heat, steam or cooling
73

Emission factor (in units of metric tons CO2e per MWh)
0

Comment
The Colonsay facility has a green power purchase agreement with SaskPower to purchase low carbon electricity and is accounted for here.

C-CH8.3

(C-CH8.3) Disclose details on your organization’s consumption of feedstocks for chemical production activities.

Feedstocks
Natural gas

Total consumption
192145

Total consumption unit
thousand cubic metres

Inherent carbon dioxide emission factor of feedstock, metric tons CO2 per consumption unit
1.89

Heating value of feedstock, MWh per consumption unit
10.7

Heating value
LHV

Comment
Calculated using 1 MMBtu equivalent to 27.3 m³ natural gas from U.S. Energy Information Administration. Density of natural gas estimated at .8 kg/m³.

Feedstocks
Other, please specify (Molten Sulfur)

Total consumption
4302561

Total consumption unit
metric tons

Inherent carbon dioxide emission factor of feedstock, metric tons CO2 per consumption unit
0

Heating value of feedstock, MWh per consumption unit
4.57

Heating value
LHV

Comment
Emissions from feedstock take the form of SO2 which is consumed in the process to create an intermediary for our process. The heating value was calculated using energy generation per ton of intermediary product converted to per ton feedstock input.
C-CH8.3a

(C-CH8.3a) State the percentage, by mass, of primary resource from which your chemical feedstocks derive.

<table>
<thead>
<tr>
<th>Percentage of total chemical feedstock (%)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Oil</td>
<td>0</td>
</tr>
<tr>
<td>Natural Gas</td>
<td>3.4</td>
</tr>
<tr>
<td>Coal</td>
<td>0</td>
</tr>
<tr>
<td>Biomass</td>
<td>0</td>
</tr>
<tr>
<td>Waste</td>
<td>0</td>
</tr>
<tr>
<td>Fossil fuel (where coal, gas, oil cannot be distinguished)</td>
<td>96.6</td>
</tr>
<tr>
<td>Unknown source or unable to disaggregate</td>
<td>0</td>
</tr>
</tbody>
</table>

C9. Additional metrics

C9.1

(C9.1) Provide any additional climate-related metrics relevant to your business.

<table>
<thead>
<tr>
<th>Description</th>
<th>Metric value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Energy use</td>
<td>2.31</td>
</tr>
</tbody>
</table>

Metric numerator

Total Energy Consumption

Metric denominator (intensity metric only)

Metric tonnes finished product

% change from previous year

13.8

Direction of change

Decreased

Please explain

Lower consumption of natural gas for ammonia production.

C-CH9.3a

(C-CH9.3a) Provide details on your organization's chemical products.

<table>
<thead>
<tr>
<th>Output product</th>
<th>Production (metric tons)</th>
<th>Capacity (metric tons)</th>
<th>Direct emissions intensity (metric tons CO2e per metric ton of product)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ammonia</td>
<td>282874</td>
<td>455000</td>
<td></td>
</tr>
<tr>
<td>Output product</td>
<td>Other, please specify (Sulfuric Acid)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>---------------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Production (metric tons)</td>
<td>12703410</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacity (metric tons)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Direct emissions intensity</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electricity intensity (MWh per metric ton of product)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam intensity (MWh per metric ton of product)</td>
<td>0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Steam/ heat recovered (MWh per metric ton of product)</td>
<td>1.496</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>As sulfuric acid is an intermediate input used in our finished crop nutrient products, we have not calculated the emissions intensity associated with this chemical specifically. Rather, it is included in the facility, business unit and company-wide emissions figures.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output product</th>
<th>Other, please specify (Phosphoric Acid)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production (metric tons)</td>
<td>44000000</td>
</tr>
<tr>
<td>Capacity (metric tons)</td>
<td>53000000</td>
</tr>
<tr>
<td>Direct emissions intensity</td>
<td></td>
</tr>
<tr>
<td>Electricity intensity (MWh per metric ton of product)</td>
<td>0</td>
</tr>
<tr>
<td>Steam intensity (MWh per metric ton of product)</td>
<td>0</td>
</tr>
<tr>
<td>Steam/ heat recovered (MWh per metric ton of product)</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td></td>
<td>As phosphoric acid is an intermediate input used in our finished crop nutrient products, we have not calculated the emissions intensity associated with this chemical specifically. Rather, it is included in the facility, business unit and company-wide emissions figures.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Output product</th>
<th>Other, please specify (Phosphate crop and animal feed products)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Production (metric tons)</td>
<td>94000000</td>
</tr>
<tr>
<td>Capacity (metric tons)</td>
<td>11700000</td>
</tr>
<tr>
<td>Direct emissions intensity</td>
<td>0.159</td>
</tr>
<tr>
<td>Electricity intensity (MWh per metric ton of product)</td>
<td>0.33</td>
</tr>
<tr>
<td>Comment</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Steam intensity (MWh per metric ton of product)

0

Steam/ heat recovered (MWh per metric ton of product)

0

Comment
Per CDP methodology, direct emissions intensity represents the Scope 1 emissions per unit production of operations related to phosphate crop and animal feed products. Also per CDP methodology, electricity intensity represents the electrical power consumed, both purchased and electricity that is generated within the facility, per unit production of operations related to phosphate crop and animal feed products.

Output product
Other, please specify (Potash Crop Nutrient)

Production (metric tons)
8700000

Capacity (metric tons)
10500000

Direct emissions intensity (metric tons CO2e per metric ton of product)
0.103

Electricity intensity (MWh per metric ton of product)
0.17

Steam intensity (MWh per metric ton of product)

Steam/ heat recovered (MWh per metric ton of product)

Comment
Per CDP methodology, direct emissions intensity represents the Scope 1 emissions per unit production of operations related to potash crop nutrients. Also per CDP methodology, electricity intensity represents the electrical power consumed, both purchased and electricity that is generated within the facility, per unit production of operations related to potash crop nutrients.

C-CH9.6
(C-CH9.6) Disclose your organization’s low-carbon investments for chemical production activities.

Investment start date
March 1 2004

Investment end date
December 31 2017

Investment area
Property, plant and equipment

Technology area
Waste heat recovery

Investment maturity
Large scale commercial deployment

Investment figure
21000000

Low-carbon investment percentage
81 - 100%

Please explain
Mosaic has invested heavily in equipment that enables the internal generation of electricity in a process called cogeneration. The process of heat recovery allows several of our Phosphate plants and mines to significantly reduce the amount of third-party, primarily fossil-fuel based electricity required from utility companies. The cogeneration process begins at our manufacturing operations, where we use sulfuric acid to liberate crop nutrients (phosphorous) from raw material inputs. This process generates a significant amount of waste heat that is recovered and converted to steam by bottoming cycle combined heat and power systems. This steam is sent to turbine generators and converted to virtually greenhouse gas emissions-free electricity that powers our manufacturing facilities and mines. In instances when we generate more clean cogenerated energy than we can use at our own operations, the excess is exported to the local grid. We are constantly looking for opportunities to improve the efficiency and output of our cogeneration assets, including bringing additional turbo generators online to increase our low-GHG electrical generation capacity, when possible. Accordingly, there is no “end date” for this investment. The amount of investment depends on the specific project, but as an example of an investment figure, in 2016 we brought a turbo generator online at our Uncle Sam facility that can provide up to an additional 15 megawatts of low-GHG electrical generation capacity. This initiative cost approximately $21 million. The “start date” for this investment was assigned to March, 2004, as that was when The Mosaic Company was incorporated. However, Mosaic’s legacy companies employed cogeneration technology prior to that date.

C10. Verification

C10.1

(C10.1) Indicate the verification/assurance status that applies to your reported emissions.

<table>
<thead>
<tr>
<th>Scope</th>
<th>Verification/assurance status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scope 1</td>
<td>Third-party verification or assurance process in place</td>
</tr>
<tr>
<td>Scope 2 (location-based or market-based)</td>
<td>Third-party verification or assurance process in place</td>
</tr>
<tr>
<td>Scope 3</td>
<td>Third-party verification or assurance process in place</td>
</tr>
</tbody>
</table>

C10.1a
(C10.1a) Provide further details of the verification/assurance undertaken for your Scope 1 and/or Scope 2 emissions and attach the relevant statements.

Scope
Scope 1

Verification or assurance cycle in place
Annual process

Status in the current reporting year
Complete

Type of verification or assurance
Moderate assurance

Attach the statement
MOS Final Assurance_6-14-18.pdf

Page/ section reference
pg. 1/2

Relevant standard
A1000AS

Proportion of reported emissions verified (%)
100

Scope
Scope 2 location-based

Verification or assurance cycle in place
Annual process

Status in the current reporting year
Complete

Type of verification or assurance
Moderate assurance

Attach the statement
MOS Final Assurance_6-14-18.pdf

Page/ section reference
pg. 1/2

Relevant standard
A1000AS

Proportion of reported emissions verified (%)
100

C10.1b
(C10.1b) Provide further details of the verification/assurance undertaken for your Scope 3 emissions and attach the relevant statements.

Scope
Scope 3 - at least one applicable category

Verification or assurance cycle in place
Annual process

Status in the current reporting year
Complete

Attach the statement
MOS Final Assurance_6-14-18.pdf

Page/section reference
pg. 1/2

Relevant standard
AA1000AS

C10.2

(C10.2) Do you verify any climate-related information reported in your CDP disclosure other than the emissions figures reported in C6.1, C6.3, and C6.5?
Yes

C10.2a

(C10.2a) Which data points within your CDP disclosure have been verified, and which verification standards were used?

<table>
<thead>
<tr>
<th>Disclosure module verification relates to</th>
<th>Data verified</th>
<th>Verification standard</th>
<th>Please explain</th>
</tr>
</thead>
<tbody>
<tr>
<td>C8. Energy</td>
<td>Other, please specify (Direct and indirect energy consumption)</td>
<td>AA1000AS</td>
<td>Energy information related to consumption and intensity verified by Trucost.</td>
</tr>
<tr>
<td>C7. Emissions breakdown</td>
<td>Year on year change in emissions (Scope 1 and 2)</td>
<td>AA1000AS</td>
<td>Additional data assured in 2016 is year-on-year emissions change in Scope 2. See page 1 of attached Trucost Assurance Statement.</td>
</tr>
</tbody>
</table>

MOS Final Assurance_6-14-18.pdf

C11. Carbon pricing

C11.1

(C11.1) Are any of your operations or activities regulated by a carbon pricing system (i.e. ETS, Cap & Trade or Carbon Tax)?
No, but we anticipate being regulated in the next three years
What is your strategy for complying with the systems in which you participate or anticipate participating?

In late 2016, the Canadian federal government announced plans for a comprehensive tax on carbon emissions, under which provinces opting out of the tax would have the option of adopting a cap-and-trade system. In the plans, the federal government also committed to implementing a federal carbon pricing backstop system that will apply in any province or territory that does not have a carbon pricing system in place by 2018. Our Saskatchewan Potash facilities will continue to work with the Saskatchewan Ministry of Environment, Environment and Climate Change Canada and other government stakeholders, through participation in industry associations, to determine next steps. We will also continue to monitor developments relating to the anticipated proposed legislation, as well as the potential future effect on our operating activities, energy, raw material and transportation costs, results of operations, liquidity or capital resources. In the meantime, the facilities continue to actively work toward 2020 sustainability targets to reduce energy use and GHGs per tonne of product. Other efficiency projects and large-scale projects and partnerships that have the potential to drive further reductions in GHG emissions are under consideration.

Has your organization originated or purchased any project-based carbon credits within the reporting period?

No

Does your organization use an internal price on carbon?

Yes
(C11.3a) Provide details of how your organization uses an internal price on carbon.

Objective for implementing an internal carbon price
Navigate GHG regulations

GHG Scope
Scope 1
Scope 2

Application
In anticipation of federal or provincial regulatory changes in Saskatchewan, Canada where we have potash mines, we have applied various pricing scenarios to our emissions performance in order to assess our potential exposure. For example, one potential proposal applies a tax of $10 CAD per tonne of CO2e for businesses whose GHG emissions are above a certain threshold. The tax would increase to $50 per tonne by 2022. We are considering this price for our Potash operations in Saskatchewan, Canada, using current/average GHG performance.

Actual price(s) used (Currency /metric ton)
10

Variance of price(s) used
Using the example above, we have applied differentiated pricing for our Potash operations in Saskatchewan, Canada, using current/average GHG performance.

Type of internal carbon price
Shadow price

Impact & implication
Using this example and assuming current/average GHG performance, the potential price implications to Mosaic could be more than $10 million. Note: this impact represents an estimate only, and it a simplification of one scenario under consideration at the time of our completing this report. Our Saskatchewan Potash facilities will continue to work with the Environment and Climate Change Canada, the Saskatchewan Ministry of Environment and other government stakeholders, through participation in industry associations to determine next steps for this file. As part of that engagement, we are monitoring developments relating to the anticipated proposed federal legislation on national carbon pricing, as well as the potential future effect on our operating activities, energy, raw material and transportation costs, results of operations, liquidity or capital resources.

C12. Engagement

C12.1

(C12.1) Do you engage with your value chain on climate-related issues?
Yes, our suppliers
Yes, our customers
Yes, other partners in the value chain

C12.1a
Provide details of your climate-related supplier engagement strategy.

Type of engagement
Innovation & collaboration (changing markets)

Details of engagement
Run a campaign to encourage innovation to reduce climate impacts on products and services

- **% of suppliers by number**
 1

- **% total procurement spend (direct and indirect)**
 5

- **% Scope 3 emissions as reported in C6.5**
 11

Rationale for the coverage of your engagement
Our efforts to lower our emissions footprint extend into our supply chain, and we’ve made investments that have resulted in significant improvements. For example, we contract a fleet of more than 50 trucks that run on clean-burning compressed natural gas (CNG), and a second Mosaic trucking partner added four CNG trailers to their fleet in 2015. Success is measured, in part, by year-over-year increase in shipping volumes transported more efficiently, and year-over-year reduction in transportation-associated emissions. We continue to explore opportunities with suppliers to convert additional shipping volumes to CNG.

Impact of engagement, including measures of success
In 2017 we moved a total of approximately 3.4 million tonnes of product by CNG fleet, contributing to fewer (>1%) year-over-year transportation-associated GHG emissions.

Comment

Give details of your climate-related engagement strategy with your customers.

Type of engagement
Education/information sharing

Details of engagement
Run an engagement campaign to educate customers about the climate change impacts of (using) your products, goods, and/or services

- **Size of engagement**
 75

- **% Scope 3 emissions as reported in C6.5**
 15

Please explain the rationale for selecting this group of customers and scope of engagement
Mosaic is committed to supporting best agricultural practices, including research and practices to minimize GHG emissions associated with the use of our crop nutrient products. Mosaic supports the minimization of greenhouse gas emissions from the activities related to global food supply by encouraging stakeholders in the value chain, including direct retailer customers who interact directly with the end users of our products, to enhance their understanding, adoption and promotion of 4R Nutrient Stewardship. By applying the right fertilizer at the right rate, right time and in the right place, farmers minimize environmental impacts associated with fertilizer use, including potential greenhouse gas emissions.

Impact of engagement, including measures of success
We measure success of this engagement in a variety of ways, including the number of acres under the guidance of nutrient service providers that have earned 4R Nutrient Stewardship Certification through the Nutrient Stewardship Council's 4R Nutrient Stewardship Certification Program. As of 2017, more than 2.9 million acres in the Western Lake Erie Basin (WLEB) and Ohio were under the guidance of certified providers.
(C12.1c) Give details of your climate-related engagement strategy with other partners in the value chain.

Mosaic is committed to supporting best agricultural practices, including research and practices to minimize GHG emissions associated with the use of our crop nutrient products. Mosaic supports the minimization of greenhouse gas emissions from the activities related to global food supply by encouraging stakeholders in the value chain, including the direct users of our products (farmers) to enhance their understanding, adoption and promotion of 4R Nutrient Stewardship. By applying the right fertilizer at the right rate, right time and in the right place, farmers minimize environmental impacts associated with fertilizer use, including potential greenhouse gas emissions. We measure success of this engagement in a variety of ways, including the number of acres under the guidance of nutrient service providers that have earned 4R Nutrient Stewardship Certification through the Nutrient Stewardship Council's 4R Nutrient Stewardship Certification Program. As of 2017, more than 2.9 million acres in the Western Lake Erie Basin (WLEB) and Ohio were under the guidance of certified providers.

C12.3

(C12.3) Do you engage in activities that could either directly or indirectly influence public policy on climate-related issues through any of the following?

Direct engagement with policy makers
Trade associations
Funding research organizations

C12.3a

(C12.3a) On what issues have you been engaging directly with policy makers?

<table>
<thead>
<tr>
<th>Focus of legislation</th>
<th>Corporate position</th>
<th>Details of engagement</th>
<th>Proposed legislative solution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clean energy generation</td>
<td>Support with minor exceptions</td>
<td>As one of the world's leading crop nutrient companies, Mosaic has a responsibility to be actively engaged in the promotion of sound and sustainable public policies. We are proactive in educating government officials and staff at all levels of our company's operations, the key issues our company faces, our company's importance to local communities and the critical role we play in the world's food supply.</td>
<td>It is Mosaic's belief that the production of electrical energy from highly efficient waste heat recovery resources should be recognized and supported at the highest tier of cost effective clean energy resources. Mosaic could have additional opportunities for harnessing emissions-free power under a more supportive regulatory construct. We advocate for a balanced clean energy policy that encourages the generation, transmission, and consumption of existing, low-cost resources, such as waste heat recovery, protects the rights of waste heat generation under the provisions of the Public Utility Regulatory Policies Act of 1978, and promotes fairer pricing for third-party clean energy producers when selling power back to the electrical grid.</td>
</tr>
<tr>
<td>Carbon tax</td>
<td>Oppose</td>
<td>Production of potash in Canada results in significantly lower CO2e emissions per ton of product than the potash produced by the major overseas producers. Canadian potash producers are already subject to higher tax rates and higher shipping costs than the world's other major potash producers. Implementation of a carbon tax in Canada would place an additional hardship on the Canadian potash producers, reducing their competitiveness and effectively suppressing the marketability of the world's most environmentally friendly potash; while adding to the advantages already enjoyed by the major overseas potash producers. Implementation of the proposed carbon tax would likely cause Canadian potash producers to lose market share due to inevitable operating cost increases. Overseas potash producers would be the beneficiaries of the Canadian carbon tax, resulting in increased carbon emission intensity from the global potash industry as a whole.</td>
<td>Production of potash in Canada results in significantly lower CO2e emissions per ton of product than the potash produced by the major overseas producers. Canadian potash producers are already subject to higher tax rates and higher shipping costs than the world's other major potash producers. Implementation of a carbon tax in Canada would place an additional hardship on the Canadian potash producers, reducing their competitiveness and effectively suppressing the marketability of the world's most environmentally friendly potash; while adding to the advantages already enjoyed by the major overseas potash producers. Implementation of the proposed carbon tax would likely cause Canadian potash producers to lose market share due to inevitable operating cost increases. Overseas potash producers would be the beneficiaries of the Canadian carbon tax, resulting in increased carbon emission intensity from the global potash industry as a whole.</td>
</tr>
</tbody>
</table>

C12.3b
(C12.3b) Are you on the board of any trade associations or do you provide funding beyond membership?
Yes

C12.3c

(C12.3c) Enter the details of those trade associations that are likely to take a position on climate change legislation.

<table>
<thead>
<tr>
<th>Trade association</th>
<th>Is your position on climate change consistent with theirs?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fertilizer Canada</td>
<td>Consistent</td>
</tr>
</tbody>
</table>

Please explain the trade association's position

Per Fertilizer Canada's website, "The fertilizer industry takes seriously its responsibility as stewards of our soil, air and water resource. Sustainability can be achieved by balancing economic, social and environmental goals. Fertilizer Canada's members have been proactive in reducing their greenhouse gas emissions. Technological investments and process improvements have resulted in a significant reduction in emissions levels since the early 1990s. Further reductions are possible on the farm where fertilizer products are applied."

How have you, or are you attempting to, influence the position?

Mosaic is a member and Mosaic's Vice President of Public Affairs for the Potash segment serves on the Board of Directors for Fertilizer Canada (previously Canadian Fertilizer Institute).

<table>
<thead>
<tr>
<th>Trade association</th>
<th>Is your position on climate change consistent with theirs?</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Fertilizer Institute (TFI)</td>
<td>Consistent</td>
</tr>
</tbody>
</table>

Please explain the trade association's position

Per the TFI website, "TFI is the leading voice in the U.S. fertilizer industry, representing the public policy, communication and statistical needs of producers, manufacturers, retailers and transporters of fertilizer. Issues of interest to TFI members include security, international trade, energy, transportation, the environment, worker health and safety, and farm bill and conservation programs to promote the use of enhanced efficiency fertilizer."

How have you, or are you attempting to, influence the position?

Mosaic is a member of TFI and Joc O'Rourke, President and Chief Executive Officer of The Mosaic Company, was elected in 2016 to serve a one-year term ending in 2017 on TFI's Board of Directors. Programs of TFI are funded by member companies that are dedicated to advocating for the fertilizer industry.

<table>
<thead>
<tr>
<th>Trade association</th>
<th>Is your position on climate change consistent with theirs?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saskatchewan Mining Association (SMA)</td>
<td>Consistent</td>
</tr>
</tbody>
</table>

Please explain the trade association's position

The SMA advocates for and protects the sustainability of the mining industry in the Province of Saskatchewan. Competitiveness of Saskatchewan mining companies continues to be a significant challenge due to lower rates of international taxation and less stringent regulatory requirements in other jurisdictions. The SMA believes strongly in a robust and protective regulatory regime, but this regime must be practical and cost-effective if industry is to survive/thrive in Saskatchewan and Canada. Implementation of a carbon tax in Canada will place an additional hardship on mining companies, reducing their competitiveness in the world market.

How have you, or are you attempting to, influence the position?

Mosaic currently chairs SMA's Board of Directors and is active in efforts to provide solution-based technical assistance to Environment and Climate Change Canada. Two employees from Mosaic’s Potash segment serve on SMA’s Board, including our Vice Presidents of Finance and Operations.

<table>
<thead>
<tr>
<th>Trade association</th>
<th>Is your position on climate change consistent with theirs?</th>
</tr>
</thead>
<tbody>
<tr>
<td>Saskatchewan Potash Producers Association (SPPA)</td>
<td>Consistent</td>
</tr>
</tbody>
</table>
Please explain the trade association’s position
The SPPA advocates for and protects the sustainability of potash producers in the Province of Saskatchewan. Canadian potash producers create fewer emissions than their competitors and are subject to higher tax rates and higher shipping costs than the world’s other major potash producers. Implementation of a carbon tax in Canada would place an additional hardship on the Canadian potash producers, reducing their competitiveness and effectively suppressing the marketability of the world’s most environmentally friendly potash; while adding to the advantages already enjoyed by the major overseas potash producers.

How have you, or are you attempting to, influence the position?
Mosaic’s Vice President of Human Resources of Potash and Senior VP of Potash serve on SPPA’s Board of Directors, contributing to SPPA’s efforts to preserve global competitiveness of Potash industry in Saskatchewan.

C12.3d

(C12.3d) Do you publicly disclose a list of all research organizations that you fund?
No

C12.3f

(C12.3f) What processes do you have in place to ensure that all of your direct and indirect activities that influence policy are consistent with your overall climate change strategy?
Mosaic strives to be the global leader in the crop nutrient industry. We recognize the importance of being active in industry associations and cross-sector business forums that provide common platforms to advance cutting-edge scientific research and best management practices within our company and our industry. In addition to having a publicly available Leadership on Climate Change document that states our position on climate change, Mosaic has a process in place to carefully consider, on a case-by-case basis, the relevance of the engagement opportunities and alignment with our values and business strategies and pursues mutually beneficial partnerships. For example, we participate in key cross-sector and industry partnerships through membership and Board and/or committee involvement, which allows us to influence the work done by respective organizations in a way that is consistent with our strategy. Mosaic takes part in industry efforts to address the challenges of climate change and commits to further engage with policy makers and stakeholders on the issue of climate change. Mosaic recognizes that our action on climate change is good for the environment and for the long term financial health and viability of our company. Agronomy, EHS, and Public Affairs professionals interact with policymakers and global thought leaders to encourage the transfer of knowledge and to incorporate the latest thinking on sustainability into the Mosaic risk management process.

C12.4
(C12.4) Have you published information about your organization’s response to climate change and GHG emissions performance for this reporting year in places other than in your CDP response? If so, please attach the publication(s).

Publication
In voluntary communications

Status
Complete

Attach the document

Content elements
Emissions figures
Emission targets

Publication
In mainstream reports

Status
Complete

Attach the document
2017 10-k.pdf

Content elements
Strategy
Risks & opportunities

Publication
In voluntary sustainability report

Status
Complete

Attach the document
Mosaic-Sustainability-Disclosure-and-GRI-Index.pdf

Content elements
Strategy
Risks & opportunities
Emissions figures
Emission targets

C14. Signoff

C-FI

(C-FI) Use this field to provide any additional information or context that you feel is relevant to your organization’s response. Please note that this field is optional and is not scored.

C14.1

(C14.1) Provide details for the person that has signed off (approved) your CDP climate change response.

<table>
<thead>
<tr>
<th>Job title</th>
</tr>
</thead>
<tbody>
<tr>
<td>James O'Rourke, Chief Executive Officer, President and Director</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Corresponding job category</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chief Executive Officer (CEO)</td>
</tr>
</tbody>
</table>
Submit your response

In which language are you submitting your response?

English

Please confirm how your response should be handled by CDP

<table>
<thead>
<tr>
<th>Public or Non-Public Submission</th>
<th>I am submitting to</th>
</tr>
</thead>
<tbody>
<tr>
<td>I am submitting my response</td>
<td>Public</td>
</tr>
<tr>
<td></td>
<td>Investors</td>
</tr>
</tbody>
</table>

Please confirm below

I have read and accept the applicable Terms